您现在的位置是: 首页 > 热门专业 热门专业
高考圆锥曲线经典例题及答案解析_2014高考圆锥曲线
tamoadmin 2024-06-06 人已围观
简介1.高三数学圆锥曲线题,请高手解答,多谢!2.高考数学中圆锥曲线的经典例子?3.[高考]圆锥曲线的一般解题思路?圆锥曲线定义的应用 规律与方法: 1、圆锥曲线的定义是相应标准方程和几何性质的“源”,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略. 2、研究有关点间的距离的最值问题时,常用定义把曲线上的点到焦点的距离转化为到另一焦点的距离或利用定义把曲线上的
1.高三数学圆锥曲线题,请高手解答,多谢!
2.高考数学中圆锥曲线的经典例子?
3.[高考]圆锥曲线的一般解题思路?
圆锥曲线定义的应用
规律与方法:
1、圆锥曲线的定义是相应标准方程和几何性质的“源”,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.
2、研究有关点间的距离的最值问题时,常用定义把曲线上的点到焦点的距离转化为到另一焦点的距离或利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题.
例1 若点M(2,1),点C是椭圆x216+y2
7
=1的右焦点,点A是椭圆的动点,则|AM|+|AC|的最
小值是________
跟踪训练1 已知椭圆x29+y2
5=1,F1、F2分别是椭圆的左、右焦点,点A(1,1)为椭圆内一点,
点P为椭圆上一点,求|PA|+|PF1|的最大值.
2
题型二 有关圆锥曲线性质的问题
规律与方法
有关圆锥曲线的焦点、离心率、渐近线等问题是考试中常见的问题,只要掌握基本公式和概念,并且充分理解题意,大都可以顺利求解.
例2 已知椭圆x23m2+y25n2=1和双曲线x22m2-y2
3n2=1有公共的焦点,那么双曲线的渐近线
方程是
跟踪训练2 已知双曲线x2a2-y2b2=1的离心率为2,焦点与椭圆x225+y2
9=1的焦点相同,那
么双曲线的焦点坐标为________;渐近线方程为________.
题型三 直线与圆锥曲线位置关系问题
规律与方法:
1.直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行.
2.有关直线与圆锥曲线的位置关系的题目可能会涉及直线与圆锥曲线的关系中的弦长、焦点弦及弦中点问题、取值范围、最值等问题.
3.这类问题综合性强,分析这类问题,往往利用数形结合的思想和“设而不求”的方法、对称的方法及根与系数的关系等.
例3 已知椭圆C:x2a2+y2b2=1 (a>b>0)的离心率为6
3,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为3
2
,求△AOB面积的最大值.
3
跟踪训练3 已知向量a=(x,3y),b=(1,0)且(a+3b)⊥(a-3b). (1)求点Q(x,y)的轨迹C的方程;
(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,-1),当|AM|=|AN|时,求实数m的取值范围
题型四 与圆锥曲线有关的轨迹问题
规律与方法:
轨迹是动点按一定规律运动而形成的,轨迹的条件可以用动点坐标表示出来.求轨迹方程的基本方法是
(1)直接法求轨迹方程:建立适当的直角坐标系,根据条件列出方程; (2)待定系数法求轨迹方程:根据曲线的标准方程; (3)定义法求轨迹方程:动点的轨迹满足圆锥曲线的定义;
(4)代入法求轨迹方程:动点M(x,y)取决于已知曲线C上的点(x0,y0)的坐标变化,根据两者关系,得到x,y,x0,y0的关系式,用x,y表示x0,y0,代入曲线C的方程. 例4 如图,已知线段AB=4,动圆O1与线段AB切于点C,且AC-BC=22,过点A、B分别作圆O1切线,两切线交于点P,且P、O1均在AB的同侧,求动点P的轨迹方程.
高三数学圆锥曲线题,请高手解答,多谢!
在每年的高考中,有关圆锥曲线的试题约占全卷总分的13%,是相当重要的考点。下面我整理了《高中数学圆锥曲线公式大全》,欢迎阅读。
高中数学圆锥曲线公式大全
1.焦半径公式 ,P为椭圆上任意一点,则│PF1│= a + eXo
│PF2│= a - eXo
F1 F2分别为其左,右焦点
2.通径长 = 2b?/a
3.焦点三角形面积公式
S⊿PF1F2 = b?tanθ/2 θ为∠F1PF2
这个可能有点难理解,不过结合第一定义可以较快的推,双曲线的也是同样方法
4.左准点Q 自己取的名字方便叙述,准线与X轴的焦点
过左焦点F1的任意一条线与椭圆交与A ,B 那么一定有:X轴平分∠AQB
在右边也是一样
1.通径就不说了 2.焦半径公式有8个,很难打符号的,不过可以根据极座标方程来直接解答,比焦半径公式还快一些
3.焦点三角形面积公式
S⊿PF1F2 =b?cotθ/2 左右支都是它
y?=2px p>0过焦点的直线交它于AX1,Y1,BX2,Y2两点
1.│AB│=X1 + X2 + p =2p/sin?θ θ为直线AB的倾斜角
2. Y1*Y2 = -p? , X1*X2 = p?/4
3.1/│FA│ + 1/│FB│ = 2/p
4.结论:以AB 为直径的圆与抛物线的准线线切
5.焦半径公式: │FA│= X1 + p/2 = p/1-cosθ
直线与圆锥曲线 y= Fx 相交于A ,B,则
│AB│=√1+k? * [√Δ/│a│]
圆锥曲线包括椭圆圆为椭圆的特例,抛物线,双曲线。
圆锥曲线二次曲线的统一定义:
到定点焦点的距离与到定直线准线的距离的商是常数e离心率的点的轨迹。当e>1时,为双曲线的一支,当e=1时,为抛物线,当0
有途网我建议还是先研究书本的基本概念,掌握相关公式,图形特点,利用这些概念解决题目,之后再做习题。
高中数学主要考点及易错点整理
高中数学易错点
不等式
1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
2.绝对值不等式的解法及其几何意义是什么?
3.解分式不等式应注意什么问题?用“根轴法”解整式分式不等式的注意事项是什么?
4.解含引数不等式的通法是“定义域为前提,函式的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
5.在求不等式的解集、定义域及值域时,其结果一定要用 *** 或区间表示;不能用不等式表示.
6.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.
高中数学易错点
数列
1.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
2.在“已知,求”的问题中,你在利用公式时注意到了吗?时,应有需要验证,有些题目通项是分段函式。
3.你知道存在的条件吗?你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
4.数列单调性问题能否等同于对应函式的单调性问题?数列是特殊函式,但其定义域中的值不是连续的。
5.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
高中数学主要考点:立体几何初步
考点1:空间几何体的结构、三检视和直检视
考点2:空间几何体的表面积和体积
考点3:点、线、面的位置关系
考点4:直线、平面平行的性质与判定
考点5:直线、平面垂直的判定及其性质
高中数学主要考点:三角函式
考点1:任意角的三角函式、同三角函式和诱导公式
考点2:三角函式的影象和性质
考点3:三角函式的最值与综合运用
考点4:三角恒等变换
考点5:解三角形
高中数学主要考点:数列
考点1:数列的概念及其表示
考点2:等差数列
考点3:等比数列
考点4:数列的综合运用
高考数学中圆锥曲线的经典例子?
抛物线x^2=4y的焦点坐标是F(0,1),即有椭圆的c=1.又有A(0,2),即有a=2, b^2=a^2-c^2=4-1=3
故椭圆E方程是y^2/4+x^2/3=1.
设过F(0,1)的直线方程是y=kx+1.代入到抛物线中有x^2=4(kx+1)
即有x^2-4kx-4=0
设C坐标是(x1,y1),D(x2,y2)
y=x^2/4, y'=x/2,则有L1的斜率k1=x1/2, L2的斜率k2=x2/2
故有k1*k2=x1x2/4=-4/4=-1
故有L1和L2垂直.
y=kx+1代入到椭圆中有(kx+1)^2/4+x^2/3=1,即有4x^2+3(k^2x^2+2kx+1)=12
(4+3k^2)x^2+6kx-9=0
设M坐标是(x3,y3),N(x4,y4),则有x3+x4=-6k/(4+3k^2),x3x4=-9/(4+3k^2)
又有S(AMN)=1/2AF*|X3-X4|=1/2*1*|x3-x4|=1/2根号[(x3+x4)^2-4x3x4]=1/2根号[36k^2/(4+3k^2)+36/(4+3k^2)]=1/2根号(36k^2+144+108k^2)/(4+3k^2)^2=1/2*12/(4+3k^2)*根号(k^2+1)=6根号(k^2+1)/(3k^2+4)
设t=根号(k^2+1)>=1,则有S=6t/(3t^2+1)=6/(3t+1/t)<=6/ (3+1)=3/2
即当根号(k^2+1)=1,即k=0时取得最大值是3/2.
[高考]圆锥曲线的一般解题思路?
椭圆标准方程典型例题
例1 已知椭圆 的一个焦点为(0,2)求 的值.
分析:把椭圆的方程化为标准方程,由 ,根据关系 可求出 的值.
解:方程变形为 .因为焦点在 轴上,所以 ,解得 .
又 ,所以 , 适合.故 .
例2 已知椭圆的中心在原点,且经过点 , ,求椭圆的标准方程.
分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,
求出参数 和 (或 和 )的值,即可求得椭圆的标准方程.
解:当焦点在 轴上时,设其方程为 .
由椭圆过点 ,知 .又 ,代入得 , ,故椭圆的方程为 .
当焦点在 轴上时,设其方程为 .
由椭圆过点 ,知 .又 ,联立解得 , ,故椭圆的方程为 .
例3 的底边 , 和 两边上中线长之和为30,求此三角形重心 的轨迹和顶点 的轨迹.
分析:(1)由已知可得 ,再利用椭圆定义求解.
(2)由 的轨迹方程 、 坐标的关系,利用代入法求 的轨迹方程.
解: (1)以 所在的直线为 轴, 中点为原点建立直角坐标系.设 点坐标为 ,由 ,知 点的轨迹是以 、 为焦点的椭圆,且除去轴上两点.因 , ,有 ,
故其方程为 .
(2)设 , ,则 . ①
由题意有 代入①,得 的轨迹方程为 ,其轨迹是椭圆(除去 轴上两点).
例4 已知 点在以坐标轴为对称轴的椭圆上,点 到两焦点的距离分别为 和 ,过 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.
解:设两焦点为 、 ,且 , .从椭圆定义知 .即 .
从 知 垂直焦点所在的对称轴,所以在 中, ,
可求出 , ,从而 .
∴所求椭圆方程为 或 .
例5 已知椭圆方程 ,长轴端点为 , ,焦点为 , , 是椭圆上一点, , .求: 的面积(用 、 、 表示).
分析:求面积要结合余弦定理及定义求角 的两邻边,从而利用 求面积.
解:如图,设 ,由椭圆的对称性,不妨设 ,由椭圆的对称性,不妨设 在第一象限.由余弦定理知: ? .①
由椭圆定义知: ②,则 得 .
故 .
例6 已知动圆 过定点 ,且在定圆 的内部与其相内切,求动圆圆心 的轨迹方程.
分析:关键是根据题意,列出点P满足的关系式.
解:如图所示,设动圆 和定圆 内切于点 .动点 到两定点,
即定点 和定圆圆心 距离之和恰好等于定圆半径,
即 .∴点 的轨迹是以 , 为两焦点,
半长轴为4,半短轴长为 的椭圆的方程: .
说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.
例7 已知椭圆 ,(1)求过点 且被 平分的弦所在直线的方程;
(2)求斜率为2的平行弦的中点轨迹方程;
(3)过 引椭圆的割线,求截得的弦的中点的轨迹方程;
(4)椭圆上有两点 、 , 为原点,且有直线 、 斜率满足 ,
求线段 中点 的轨迹方程.
分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.
解:设弦两端点分别为 , ,线段 的中点 ,则
①-②得 .
由题意知 ,则上式两端同除以 ,有 ,
将③④代入得 .⑤
(1)将 , 代入⑤,得 ,故所求直线方程为: . ⑥
将⑥代入椭圆方程 得 , 符合题意, 为所求.
(2)将 代入⑤得所求轨迹方程为: .(椭圆内部分)
(3)将 代入⑤得所求轨迹方程为: .(椭圆内部分)
(4)由①+②得 : , ⑦, 将③④平方并整理得
, ⑧, , ⑨
将⑧⑨代入⑦得: , ⑩
再将 代入⑩式得: , 即 .
此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.
例8 已知椭圆 及直线 .
(1)当 为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为 ,求直线的方程.
解:(1)把直线方程 代入椭圆方程 得 ,
即 . ,解得 .
(2)设直线与椭圆的两个交点的横坐标为 , ,由(1)得 , .
根据弦长公式得 : .解得 .方程为 .
说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.
这里解决直线与椭圆的交点问题,一般考虑判别式 ;解决弦长问题,一般应用弦长公式.
用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.
例9 以椭圆 的焦点为焦点,过直线 上一点 作椭圆,要使所作椭圆的长轴最短,点 应在何处?并求出此时的椭圆方程.
分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.
解:如图所示,椭圆 的焦点为 , .
点 关于直线 的对称点 的坐标为(-9,6),直线 的方程为 .
解方程组 得交点 的坐标为(-5,4).此时 最小.
所求椭圆的长轴: ,∴ ,又 ,
∴ .因此,所求椭圆的方程为 .
例10 已知方程 表示椭圆,求 的取值范围.
解:由 得 ,且 .
∴满足条件的 的取值范围是 ,且 .
说明:本题易出现如下错解:由 得 ,故 的取值范围是 .
出错的原因是没有注意椭圆的标准方程中 这个条件,当 时,并不表示椭圆.
例11 已知 表示焦点在 轴上的椭圆,求 的取值范围.
分析:依据已知条件确定 的三角函数的大小关系.再根据三角函数的单调性,求出 的取值范围.
解:方程可化为 .因为焦点在 轴上,所以 .
因此 且 从而 .
说明:(1)由椭圆的标准方程知 , ,这是容易忽视的地方.
(2)由焦点在 轴上,知 , . (3)求 的取值范围时,应注意题目中的条件 .
例12 求中心在原点,对称轴为坐标轴,且经过 和 两点的椭圆方程.
分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,
可设其方程为 ( , ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.
解:设所求椭圆方程为 ( , ).由 和 两点在椭圆上可得
即 所以 , .故所求的椭圆方程为 .
例13 知圆 ,从这个圆上任意一点 向 轴作垂线段,求线段中点 的轨迹.
分析:本题是已知一些轨迹,求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹.
解:设点 的坐标为 ,点 的坐标为 ,则 , .
因为 在圆 上,所以 .
将 , 代入方程 得 .所以点 的轨迹是一个椭圆 .
说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为 ,
设已知轨迹上的点的坐标为 ,然后根据题目要求,使 , 与 , 建立等式关系,
从而由这些等式关系求出 和 代入已知的轨迹方程,就可以求出关于 , 的方程,
化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.
例14 已知长轴为12,短轴长为6,焦点在 轴上的椭圆,过它对的左焦点 作倾斜解为 的直线交椭圆于 , 两点,求弦 的长.
分析:可以利用弦长公式 求得,
也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.
解:(法1)利用直线与椭圆相交的弦长公式求解.
.因为 , ,所以 .因为焦点在 轴上,
所以椭圆方程为 ,左焦点 ,从而直线方程为 .
由直线方程与椭圆方程联立得: .设 , 为方程两根,所以 , , , 从而 .
(法2)利用椭圆的定义及余弦定理求解.
由题意可知椭圆方程为 ,设 , ,则 , .
在 中, ,即 ;
所以 .同理在 中,用余弦定理得 ,所以 .
(法3)利用焦半径求解.
先根据直线与椭圆联立的方程 求出方程的两根 , ,它们分别是 , 的横坐标.
再根据焦半径 , ,从而求出 .
例15 椭圆 上的点 到焦点 的距离为2, 为 的中点,则 ( 为坐标原点)的值为A.4 B.2 C.8 D.
解:如图所示,设椭圆的另一个焦点为 ,由椭圆第一定义得 ,所以 ,
又因为 为 的中位线,所以 ,故答案为A.
说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于 )的点的轨迹叫做椭圆.
(2)椭圆上的点必定适合椭圆的这一定义,即 ,利用这个等式可以解决椭圆上的点与焦点的有关距离.
例16 已知椭圆 ,试确定 的取值范围,使得对于直线 ,椭圆 上有不同的两点关于该直线对称.
分析:若设椭圆上 , 两点关于直线 对称,则已知条件等价于:(1)直线 ;(2)弦 的中点 在 上.
利用上述条件建立 的不等式即可求得 的取值范围.
解:(法1)设椭圆上 , 两点关于直线 对称,直线 与 交于 点.
∵ 的斜率 ,∴设直线 的方程为 .由方程组 消去 得
①。∴ .于是 , ,
即点 的坐标为 .∵点 在直线 上,∴ .解得 . ②
将式②代入式①得 ③
∵ , 是椭圆上的两点,∴ .解得 .
(法2)同解法1得出 ,∴ ,
,即 点坐标为 .
∵ , 为椭圆上的两点,∴ 点在椭圆的内部,∴ .解得 .
(法3)设 , 是椭圆上关于 对称的两点,直线 与 的交点 的坐标为 .
∵ , 在椭圆上,∴ , .两式相减得 ,
即 .∴ .
又∵直线 ,∴ ,∴ ,即①。
又 点在直线 上,∴ ②。由①,②得 点的坐标为 .以下同解法2.
说明:涉及椭圆上两点 , 关于直线 恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:
(1)利用直线 与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式 ,建立参数方程.
(2)利用弦 的中点 在椭圆内部,满足 ,将 , 利用参数表示,建立参数不等式.
例17 在面积为1的 中, , ,建立适当的坐标系,求出以 、 为焦点且过 点的椭圆方程.
解:以 的中点为原点, 所在直线为 轴建立直角坐标系,设 .
则 ∴ 即 ∴ 得
∴所求椭圆方程为
例18 已知 是直线 被椭圆 所截得的线段的中点,求直线 的方程.
分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去 (或 ),得到关于 (或 )的一元二次方程,再由根与系数的关系,直接求出 , (或 , )的值代入计算即得.
并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的.
解:方法一:设所求直线方程为 .代入椭圆方程,整理得
①
设直线与椭圆的交点为 , ,则 、 是①的两根,∴
∵ 为 中点,∴ , .∴所求直线方程为 .
方法二:设直线与椭圆交点 , .∵ 为 中点,∴ , .
又∵ , 在椭圆上,∴ , 两式相减得 ,
即 .∴ .∴直线方程为 .
方法三:设所求直线与椭圆的一个交点为 ,另一个交点 .
∵ 、 在椭圆上,∴ ①。 ②
从而 , 在方程①-②的图形 上,而过 、 的直线只有一条,∴直线方程为 .
说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法.
若已知焦点是 、 的椭圆截直线 所得弦中点的横坐标是4,则如何求椭圆方程?
1 列坐标,用点斜式设AB直线,带入已知曲线。列出方程,用韦达定理求出。证明(a,b)在直线上,只证明当X=a时,Y=b。2 用已知条件,可求K和直线方程。求ABC的内切圆设出圆心,用点到直线的距离相等求出圆心和半径。