您现在的位置是: 首页 > 教育改革 教育改革

全国二卷高考题文科数学答案,高考二卷数学文科答案

tamoadmin 2024-06-04 人已围观

简介1.中专生的高考之路2.2022年贵州高考数学答案解析及试卷汇总(含文理科)3.求2011高考浙江卷文科数学 (选择 填空)的答案详解4.跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案5.高考文科数学知识点总结归纳 2022年高考数学试题全国乙卷及答案完整解析2022年全国高考将在6月7日开考,相信大家都非常想要知道全国乙卷数学科目的答案及解析,我就为大家带来2022年高考

1.中专生的高考之路

2.2022年贵州高考数学答案解析及试卷汇总(含文理科)

3.求2011高考浙江卷文科数学 (选择 填空)的答案详解

4.跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案

5.高考文科数学知识点总结归纳

全国二卷高考题文科数学答案,高考二卷数学文科答案

2022年高考数学试题全国乙卷及答案完整解析2022年全国高考将在6月7日开考,相信大家都非常想要知道全国乙卷数学科目的答案及解析,我就为大家带来2022年高考数学试题全国乙卷及答案完整解析。

2022年全国乙卷高考答案及试卷汇总

点击即可查看

大家可以在本文前后输入高考分数查看能上的大学,了解更多院校详细信息。

一、全国乙卷数学真题试卷

文科数学

理科数学

二、全国乙卷理科数学真题答案解析

文科数学

理科数学

中专生的高考之路

第Ⅰ卷(选择题 共50分)

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.

(1)若A= ,B= ,则 =

(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)

答案:C 解析:画数轴易知.

(2)已知 ,则i( )=

(A) (B) (C) (D)

答案:B 解析:直接计算.

(3)设向量 , ,则下列结论中正确的是

(A) (B)

(C) (D) 与 垂直

答案:D 解析:利用公式计算,采用排除法.

(4)过 点(1,0)且与直线x-2y-2=0平行的直线方程是

(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0

答案:A 解析:利用点斜式方程.

(5)设数列{ }的前n项和 = ,则 的值为

(A) 15 (B) 16 (C) 49 (D)64

答案:A 解析:利用 =S8-S7,即前8项和减去前7项和.

(6)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是

答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合abc>0产生矛盾,采用排除法易知.

(7)设a= ,b= ,c= ,则a,b,c的大小关系是

(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a

答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.

(8)设x,y满足约束条件 则目标 函数z=x+y的最大值是

(A)3 (B) 4 (C) 6 (D)8

答案:C 解析:画出可行域易求.

(9)一个几何体的三视图如图,该几何体的表面积是

(A)372 (C)292

(B)360 (D)280

答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.

(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是

(A) (B) (C) (D)

答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.

数 学(文科)(安徽卷)

第Ⅱ卷(非选择题共100分)

二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置?

(11)命题“存在x∈R,使得x2+2x+5=0”的否定是

答案:对任何X∈R,都有X2+2X+5≠0

解析:依据“存在”的否定为“任何、任意”,易知.

(12)抛物线y2=8x的焦点坐标是

答案:(2,0) 解析:利用定义易知.

(13)如图所示,程序框图(算法流程图)的输出值x=

答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.

(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .

答案:5.7% 解析: , ,易知 .

(15)若a>0 ,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号).

①ab≤1; ② + ≤ ; ③a2+b2≥2; ④a3+b3≥3;

答案:①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利用 易知③正确

三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.

(16)△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA= .

(1)求

(2)若c-b= 1,求a的值.

(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.

解:由cosA=1213 ,得sinA= =513 .

又12 bc sinA=30,∴bc=156.

(1) =bc cosA=156?1213 =144.

(2)a2=b2+c2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2?156?(1-1213 )=25,

∴a=5

(17)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 .

(1)求椭圆E的方程;

(2)求∠F1AF2的角平分线所在直线的方程.

(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.

解:(1)设椭圆E的方程为 由e=12 ,得ca =12 ,b2=a2-c2 =3c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为

(Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=34 (X+2),

即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,

∠F1AF2的角平分线所在直线的斜率为正数.

设P(x,y)为∠F1AF2的角平分线所在直线上任一点,

则有

若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去.

于是3x-4y+6=-5x+10,即2x-y-1=0.

所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0.

18、(本小题满分13分)

某市2010年4月1日—4月30日对空气 污染指数的检测数据如下(主要污染物为可吸入颗粒物):

61,76,70,56,81,91,92,91,75 ,81,88,67,101,103,95,91,

77,86,81,83,82,82,64,79,86,85,75,71,49,45,

(Ⅰ) 完成频率分布表;

(Ⅱ)作出频率分布直方图;

(Ⅲ)根据国家标准,污 染指数在0~50之间时 ,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。

请你依据所给数据和上述标准,对 该市的空气质量给出一个简短评价.

(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.

解:(Ⅰ) 频率分布表:

分 组 频 数 频 率

[41,51) 2 230

[51,61) 1 130

[61,71) 4 430

[71,81) 6 630

[81,91) 10 1030

[91,101) 5 530

[101,111) 2 230

(Ⅱ)频率分布直方图:

(Ⅲ)答对下述两条中的一条即可:

(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 . 有26天处于良好的水平,占当月天数的1315 . 处于优或良的天数共有28天,占当月天数的1415 . 说明该市空气质量基本良好.

(ii)轻微污染有2天,占当月天数的115 . 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%. 说明该市空气质量有待进一步改善.

(19) (本小题满分13分)

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,E F∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;

(Ⅱ)求证:AC⊥平面EDB;

(Ⅲ)求四面体B—DEF的体积;

(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.

(Ⅰ) 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GH∥AB且 GH= AB 又EF∥AB且 EF= AB

∴EF∥GH. 且 EF=GH ∴四边形EFHG为平行四边形.

∴EG∥FH,而EG 平面EDB,∴FH∥平面EDB.

(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.

又EF∥AB,∴ EF⊥BC. 而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.

∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.

∴ FH⊥AC. 又FH∥EG,∴ AC⊥EG. 又AC⊥BD,EG∩BD=G,

∴ AC⊥平面EDB.

(Ⅲ)解:∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.

∴ BF为四面体B-DEF的高. 又BC=AB=2, ∴ BF=FC=

(20)(本小题满分12分)

设函数f(x)= sinx-cosx+x+1, 0﹤x﹤2 ,求函数f(x)的单调区间与极值.

(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.

解:由f(x)=sinx-cosx+x+1,0﹤x﹤2 ,

知 =cosx+sinx+1,

于是 =1+ sin(x+ ).

令 =0,从而sin(x+ )=- ,得x= ,或x=32 .

当x变化时, ,f(x)变化情况如下表:

X (0, )

( ,32 )

32

(32 ,2 )

+ 0 - 0 +

f(x) 单调递增↗ +2

单调递减↘ 32

单调递增↗

因此,由上表知f(x)的单调递增区间是(0, )与(32 ,2 ),单调递减区间是( ,32 ),极小值为f(32 )=32 ,极大值为f( )= +2.

(21)(本小题满分13分)

设 , ..., ,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y= x相切,对每一个正整数n,圆 都与圆 相互外切,以 表示 的半径,已知 为递增数列.

(Ⅰ)证明: 为等比数列;

(Ⅱ)设 =1,求数列 的前n项和.

(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.

解:(Ⅰ)将直线y= x的倾斜角记为 , 则有tan = ,sin = 12 .

设Cn的圆心为( ,0),则由题意知 = sin = 12 ,得 = 2 ;同理 ,题意知 将 = 2 代入,解得 rn+1=3rn.

故{ rn }为公比q=3的等比数列.

(Ⅱ)由于r1=1,q=3,故rn=3n-1,从而 =n? ,

记Sn= , 则有 Sn=1+2?3-1+3?3-2+………+n? . ①

=1?3-1+2?3-2+………+(n-1) ? +n? . ② ①-②,得

=1+3-1 +3-2+………+ -n? = - n? = –(n+ )?

Sn= – (n+ )? .

2022年贵州高考数学答案解析及试卷汇总(含文理科)

中专生参加普通高考,难度确实不小。因为中专教育更侧重于技能实操,对于书本知识不像高中那样深入。但这不代表不可能!只要掌握高考科目设置,有策略地备考,你也能顺利走进大学校门。

科目设置

高考改革后,科目设置变为3+3模式。首个3指的是语文、数学、英语三大必考科目,而第二个3则允许你在剩余学科中灵活选择。明确这个,备考之路就清晰多了。

普通高考

除了对口升学招生,中专生还可以选择参加普通高考。虽然难度较大,但只要掌握科目设置,有策略地备考,你也能顺利通过考试。

对口升学招生

对口升学招生是专为中专生设计的升学途径,考试内容包括文化课(语文、数学、英语)和专业课。只要分数达标,你就可以在本省选择心仪的专科或本科院校。这种招生方式一般由省教育招生考试院组织,确保公平公正。

努力奋斗

两条路,任你选。只要努力,梦想就在前方!中专生们,加油吧!

求2011高考浙江卷文科数学 (选择 填空)的答案详解

2022年全国高考将在6月7日开考,相信大家都非常想要知道贵州高考文科数学和理科数学科目的答案及解析,我就为大家带来2022年贵州高考数学答案解析及试卷汇总。

2022年贵州高考答案及试卷汇总

点击即可查看

大家可以在本文 后输入高考分数查看能上的大学,了解更多院校详细信息。

一、贵州高考数学真题试卷

文科数学

理科数学

二、贵州高考数学真题 答案 解析

文科数学

理科数学

跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案

1——4题解析1.解:∵P={x|x<1},

∴CRP={x|x≥1}

∵Q={x|x>1},

∴Q?CRP

故选D. 2.解:∵复数z=1+i,i为虚数单位,则(1+z)?z=(2+i)(1+i)=1+3i

故选

A. 3.4.解:直线l不平行于平面α,且l?α,

则l与α相交

l与α内的直线可能相交,也可能异面,但不可能平行

故B,C,D错误

故选A 5——8题解析5.解:∵acosA=bsinB

由正弦定理得sinAcosA=sinBsinB

∴sinAcosA+cos2B=sin2B+cos2B=1

故选D 6. 7. 8.解:根据题意,首先分析从5个球中任取3个球,共C53=10种取法,

所取的3个球中没有白球即全部红球的情况有C33=1种,

则没有白球的概率为十分之一;

则所取的3个球中至少有1个白球的概率是十分之九;

故选D.

高考文科数学知识点总结归纳

呵呵,楼上的是全国一卷的,而且只有数学卷,我帮楼主找找吧,但是现在网速慢,打不开网页,破电信!!!

等晚上我找到了整理好发给楼主啊,收到了请采纳哦...

PS:本是二楼的哈,楼主,现在我已经发给你了,来自7544.......全国二卷语数外理综.

做人要厚道,满意请采纳!!!!!!!!!!

对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。

高考文科数学知识点

第一,函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。

文科数学高频必考考点

第一部分:选择与填空

1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);

2.常用逻辑用语(充要条件,全称量词与存在量词的判定);

3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);

4.幂、指、对函数式运算及图像和性质

5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);

6.空间体的三视图及其还原图的表面积和体积;

7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;

8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;

9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);

10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;

11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;

12.向量数量积、坐标运算、向量的几何意义的应用;

13.正余弦定理应用及解三角形;

14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;

15.线性规划的应用;会求目标函数;

16.圆锥曲线的性质应用(特别是会求离心率);

17.导数的几何意义及运算、定积分简单求法

18.复数的概念、四则运算及几何意义;

19.抽象函数的识别与应用;

第二部分:解答题

第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;

第18题:(文)概率与统计(概率与统计相结合型)

(理)离散型随机变量的概率分布列及其数字特征;

第19题:立体几何

①证线面平行垂直;面与面平行垂直

②求空间中角(理科特别是二面角的求法)

③求距离(理科:动态性)空间体体积;

第20题:解析几何(注重思维能力与技巧,减少计算量)

①求曲线轨迹方程(用定义或待定系数法)

②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)

③求定点、定值、最值,求参数取值的问题;

第21题:函数与导数的综合应用

这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想

一般设计三问:

①求待定系数,利用求导讨论确定函数的单调性;

②求参变数取值或函数的最值;

③探究性问题或证不等式恒成立问题。

第22题:三选一:

(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;

(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。

(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。

2018高考文科数学知识点:高中数学知识点 总结

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考文科数学知识点总结

乘法与因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/aX1__X2=c/a注:韦达定理

判别式

b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有一个实根

b2-4ac<0注:方程有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和公式

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理:a/sinA=b/sinB=c/sinC=2R

注:其中R表示三角形的外接圆半径

余弦定理:b2=a2+c2-2accosB

注:角B是边a和边c的夹角

高考文科数学知识点总结相关 文章 :

★ 2022北京卷高考文科数学试题及答案解析

★ 2022全国新高考Ⅰ卷文科数学试题及答案解析

★ 2022年全国新高考1卷数学试题及答案解析

★ 2022全国新高考Ⅱ卷文科数学试题及答案解析

★ 高中导数知识点总结大全

★ 山东2022高考文科数学试题及答案解析

★ 湖北2022高考文科数学试题及答案解析

★ 2022河北高考文科数学试题及答案解析

★ 高中文科数学复习指导与注意事项

★ 2017高考数学三角函数知识点总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

文章标签: # 高考 # 数学 # 答案