您现在的位置是: 首页 > 热门专业 热门专业

高考卷理科数学-高考数学理答案

tamoadmin 2024-08-07 人已围观

简介1.2013高考课标1理数学19题答案解析2.2010浙江高考理科数学答案3.高考数学(理)是指的什么?4.今年广东高考理科数学第十题答案是多少?网上查不到.2013高考课标1理数学19题答案解析答案解释:(第一问中P(AB)的概率他们打印错了)(1)要通过合格检验这关,只有两种可能:1、第一次抽到3件合格品,这种情况的概率大小为:C(3,4)(1/2)^3*(1/2)^4=1/64;2、第一次抽

1.2013高考课标1理数学19题答案解析

2.2010浙江高考理科数学答案

3.高考数学(理)是指的什么?

4.今年广东高考理科数学第十题答案是多少?网上查不到.

2013高考课标1理数学19题答案解析

高考卷理科数学-高考数学理答案

答案解释:(第一问中P(AB)的概率他们打印错了)

(1)要通过合格检验这关,只有两种可能:1、第一次抽到3件合格品,这种情况的概率大小为:

C(3,4)(1/2)^3*(1/2)^4=1/64;2、第一次抽到4检合格品,第二次抽到一件合格品,这种情况的概率大小为:

C(4,4)(1/2)^4*(1/2)=2/64。所以能通过检查的总概率为:

(注意答案中前一项的幂次标错了,2应该改成3才对)

题目中出现的A、B、C、D只是写法上的规范与否罢了,与题目最终答案的填写关系不大(这个得看批卷老师的喜好,但是一般有过程有答案基本就是满分了)

(2)

最终花费的所有可能是400,500,800。

Q、问:400哪来的?

A、答:一次性没通过,就是没出现(1)中描述的哪两种情况。概率就是1-P(情况一)-P(情况二)=1-C(3,4)(1/2)^3(1/2)-C(4,4)(1/2)^4=11/16

Q、问:500哪来的?

A、答:两种来源:

(1)第一次检查4件全部合格,第二次检查一件合格;

(2)第一次检查4件全部合格,第二次检查一件不合格;

总概率:P=C(4,4)(1/2)^4*C(1,2)(1/2)=1/16

Q、问:800哪来的?

A、答:只要第一次3检合格,不管第二次有没有通过都得花这份钱。

所以概率只需求前半部分P=C(3,4)(1/2)^3(1/2)=4/16就可以了

满意望纳!!!!谢谢~~~

2010浙江高考理科数学答案

一 选择题

1

2

3

4

5

6

7

8

9

10

B

A

D

B

D

B

C

C

A

B

二 填空题

(11).π (12) 144 (13) 3 √2/4 (14)0(n 为偶数时);2-n-3-n( n为奇数时)(-n为 指 数 )

(15) (-∞,-2√2]U[2√2,+∞)

(16) (0,2√3/3] (17) 264

三 解答题

(18) (I)√10/4 (II)c=4 b=√6或2√6

(19)

ξ

0.5

0.7

0.9

p

3/16

6/16

7/16

Eξ=3/4

(II)p(n=2)=3(7/16)(3/16+6/16)2=1701/4096

(20) (I)√3/3 (II) 设FM=x,A'在底面射影为点O,则OA2+OM2=CM2,即8+(x+2)平方+4=64+(6-x)平方 解得X=21/4

(21) (i)x-√2y-1=0

(II)设A(x1,y1);B(x2,y2),F1(-c,0),F2(c,0),

由重心坐标公式得G(x1/3,y1/3),H(x2/3,y2/3),根据题意原点O在以线段GH为直径

的圆内,易知向量OG.OH < 0得x1x2+y1y2 < 0,

把直线方程代入曲线方程后利用根与系数关系可得x1x2=(m4-4m2)/8,y1y2 =(m2-4)/8,

代入x1x2+y1y2 < 0,得m4-3m2-4< 0,结合题中m>1,有1<m<2

(22) (I)f'(X)=(x-a)ex[x2-(a-b-3)x+2b-a-ab]

设g(x)=x2+(b-a+3)x+2b-a-ab,根据题意有g(a)<0,解得b<-a

(II)设方程x2+(b-a+3)x+2b-a-ab=0的二根为x1 x2,则x1+x2=a-b-3,x1x2=2b-a-ab,

函数f(x)的三个极值点为x1 a x2

①若x1 a x2 x4或者x4 x1 a x2 成等差数列,均有x1+x2 =2a 则

b=-a-3,代入方程中得二根为x1=a-√6,x2=a+√6,于是x4=a±2√6

②若x1 a x4 x2 或者x1 x4 a x2 成等差数列,均有x1+x2=a+x4得

x4=-b-3, x1x2 =(-2b-6-a)(2a+b+3),结合前面的x1x2=2b-a-ab可得b=-a+(-7±√13)/2,相对应的x4=a+(1±√13)/2

(做后感想:试题思维量小,看完题就知道怎么做。计算量较大,特别是选择题第10题的图象法和填空题第十七题的分类计数,较花时间。相反解答题简单,前四个解答题思维简单,计算也简单。最后一题,思维简单,计算花时间。本人做题用时1小时37分钟。)当然,难免有不当之处,敬请指导。

高考数学(理)是指的什么?

猿辅导张煜晨 高三理数 2020寒班(完结)(超清)百度网盘

链接: s://pan.baidu/s/1NWI5piNpDJt69irL1M9GhA

提取码: zy67 复制这段内容后打开百度网盘手机App,操作更方便哦 ?

若有问题欢迎追问~

今年广东高考理科数学第十题答案是多少?网上查不到.

2009年广东高考数学理科试题和答案(答案已更新)

2009-6-15 10:36:00

2009年普通高等学校招生全国统一考试(广东卷)

数学(理科)参考答案

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 已知全集 ,集合 和 的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有

A. 3个 B. 2个

C. 1个 D. 无穷多个

解析由 得 ,则 ,有2个,选B.

2. 设 是复数, 表示满足 的最小正整数 ,则对虚数单位 ,

A. 8 B. 6 C. 4 D. 2

解析 ,则最小正整数 为4,选C.

3. 若函数 是函数 的反函数,其图像经过点 ,则

A. B. C. D.

解析 ,代入 ,解得 ,所以 ,选B.

4.已知等比数列 满足 ,且 ,则当 时,

A. B. C. D.

解析由 得 , ,则 , ,选C

5. 给定下列四个命题:

①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

③垂直于同一直线的两条直线相互平行;

④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中,为真命题的是

A. ①和② B. ②和③ C. ③和④ D. ②和④

解析选D.

6. 一质点受到平面上的三个力 (单位:牛顿)的作用而处于平衡状态.已知 , 成 角,且 , 的大小分别为2和4,则 的大小为

A. 6 B. 2 C. D.

解析 ,所以 ,选D.

7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有

A. 36种 B. 12种 C. 18种 D. 48种

解析分两类:若小张或小赵入选,则有选法 ;若小张、小赵都入选,则有选法 ,共有选法36种,选A

8.已知甲、乙两车由同一起点同时出发,并沿同一路线(定为直线)行驶.甲车、乙车的速度曲线分别为 (如图2所示).那么对于图中给定的 ,下列判断中一定正确的是

A. 在 时刻,甲车在乙车前面

B. 时刻后,甲车在乙车后面

C. 在 时刻,两车的位置相同

D. 时刻后,乙车在甲车前面

解析由图像可知,曲线 比 在0~ 、0~ 与 轴所围成图形面积大,则在 、 时刻,甲车均在乙车前面,选A

二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.

(一)必做题(9 ~ 12题)

9. 随机抽取某产品 件,测得其长度分别为 ,则图3所示的程序框图输出的 , 表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”)

解析 ;平均数

10. 若平面向量 , 满足 , 平行于 轴, ,则

解析 或 ,则 或 .

11.巳知椭圆 的中心在坐标原点,长轴在 轴上,离心率为 ,且 上一点到 的两个焦点的距离之和为12,则椭圆 的方程为 .

解析 , , , ,则所求椭圆方程为 .

12.已知离散型随机变量 的分布列如右表.若 , ,则 , .

解析由题知 , , ,解得 , .

(二)选做题(13 ~ 15题,考生只能从中选做两题)

13.(坐标系与参数方程选做题)若直线 ( 为参数)与直线 ( 为参数)垂直,则 .

解析 ,得 .

14.(不等式选讲选做题)不等式 的实数解为 .

解析 且 .

15.(几何证明选讲选做题)如图4,点 是圆 上的点, 且 , 则圆 的面积等于 .

解析解法一:连结 、 ,则 ,∵ , ,∴ ,则 ;解法二: ,则 .

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)

已知向量 与 互相垂直,其中 .

(1)求 和 的值;

(2)若 ,求 的值.

解:(1)∵ 与 互相垂直,则 ,即 ,代入 得 ,又 ,∴ .

(2)∵ , ,∴ ,则 ,∴ .

17.(本小题满分12分)

根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间 , , , , , 进行分组,得到频率分布直方图如图5.

(1)求直方图中 的值;

(2)计算一年中空气质量分别为良和轻微污染的天数;

(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.

(结果用分数表示.已知 , , , )

解:(1)由图可知 ,解得 ;

(2) ;

(3)该城市一年中每天空气质量为良或轻微污染的概率为 ,则空气质量不为良且不为轻微污染的概率为 ,一周至少有两天空气质量为良或轻微污染的概率为 .

18.(本小题满分14分)

如图6,已知正方体 的棱长为2,点 是正方形 的中心,点 、 分别是棱 的中点.设点 分别是点 , 在平面 内的正投影.

(1)求以 为顶点,以四边形 在平面 内的正投影为底面边界的棱锥的体积;

(2)证明:直线 平面 ;

(3)求异面直线 所成角的正弦值.

解:(1)依题作点 、 在平面 内的正投影 、 ,则 、 分别为 、 的中点,连结 、 、 、 ,则所求为四棱锥 的体积,其底面 面积为

又 面 , ,∴ .

(2)以 为坐标原点, 、 、 所在直线分别作 轴, 轴, 轴,得 、 ,又 , , ,则 , , ,

∴ , ,即 , ,

又 ,∴ 平面 .

(3) , ,则 ,设异面直线 所成角为 ,则 .

19.(本小题满分14分)

已知曲线 与直线 交于两点 和 ,且 .记曲线 在点 和点 之间那一段 与线段 所围成的平面区域(含边界)为 .设点 是 上的任一点,且点 与点 和点 均不重合.

(1)若点 是线段 的中点,试求线段 的中点 的轨迹方程;

(2)若曲线 与 有公共点,试求 的最小值.

解:(1)联立 与 得 ,则 中点 ,设线段 的中点 坐标为 ,则 ,即 ,又点 在曲线 上,

∴ 化简可得 ,又点 是 上的任一点,且不与点 和点 重合,则 ,即 ,∴中点 的轨迹方程为 ( ).

(2)曲线 ,

即圆 : ,其圆心坐标为 ,半径

由图可知,当 时,曲线 与点 有公共点;

当 时,要使曲线 与点 有公共点,只需圆心 到直线 的距离 ,得 ,则 的最小值为 .

20.(本小题满分14分)

已知二次函数 的导函数的图像与直线 平行,且 在 处取得极小值 .设 .

(1)若曲线 上的点 到点 的距离的最小值为 ,求 的值;

(2) 如何取值时,函数 存在零点,并求出零点.

解:(1)依题可设 ( ),则 ;

又 的图像与直线 平行

, ,

设 ,则

当且仅当 时, 取得最小值,即 取得最小值

当 时, 解得

当 时, 解得

(2)由 ( ),得

当 时,方程 有一解 ,函数 有一零点 ;

当 时,方程 有二解 ,

若 , ,

函数 有两个零点 ,即 ;

若 , ,

函数 有两个零点 ,即 ;

当 时,方程 有一解 , ,

函数 有一零点

综上,当 时, 函数 有一零点 ;

当 ( ),或 ( )时,

函数 有两个零点 ;

当 时,函数 有一零点 .

21.(本小题满分14分)

已知曲线 .从点 向曲线 引斜率为 的切线 ,切点为 .

(1)求数列 的通项公式;

(2)证明: .

解:(1)设直线 : ,联立 得 ,则 ,∴ ( 舍去)

,即 ,∴

(2)证明:∵

由于 ,可令函数 ,则 ,令 ,得 ,给定区间 ,则有 ,则函数 在 上单调递减,∴ ,即 在 恒成立,又 ,

则有 ,即

文章标签: # 解析 # 直线 # 平面