您现在的位置是: 首页 > 热门专业 热门专业

数学高考题分类汇编_高考数学各类题型

tamoadmin 2024-05-16 人已围观

简介高中数学合集百度网盘下载链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ?pwd=1234提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。 #高考# 导语锲而舍之,朽木不折;锲而不舍,金石可镂。高考也需要这样持之以恒的精神。 为您提供高考数学常考题型答题技巧与方法,快来学学吧!  1、解决

数学高考题分类汇编_高考数学各类题型

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

#高考# 导语锲而舍之,朽木不折;锲而不舍,金石可镂。高考也需要这样持之以恒的精神。 为您提供高考数学常考题型答题技巧与方法,快来学学吧!

 1、解决绝对值问题

 主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

 具体转化方法有:

 ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

 ③两边平方法:适用于两边非负的方程或不等式。

 ④几何意义法:适用于有明显几何意义的情况。

2、因式分解

 根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

 提取公因式

 选择用公式

 十字相乘法

 分组分解法

 拆项添项法

3、配方法

 利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

 解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

 设元→换元→解元→还元

 5、待定系数法

 待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

 复杂代数等式型条件的使用技巧:左边化零,右边变形。

 ①因式分解型:

 (-----)(----)=0两种情况为或型

 ②配成平方型:

 (----)2+(----)2=0两种情况为且型

 7、数学中两个最伟大的解题思路

 (1)求值的思路列欲求值字母的方程或方程组

 (2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

 基本思路是:把√m化成完全平方式。即:

9、观察法

 10、代数式求值

 方法有:

 (1)直接代入法

 (2)化简代入法

 (3)适当变形法(和积代入法)

 注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程

 方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

 (1)按照类型求解

 (2)根据需要讨论

 (3)分类写出结论

 12、恒相等成立的有用条件

 (1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

 (2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

 由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

 14、平移规律

 图像的平移规律是研究复杂函数的重要方法。平移规律是:

15、图像法

 讨论函数性质的重要方法是图像法——看图像、得性质。

 定义域图像在X轴上对应的部分

 值域图像在Y轴上对应的部分

 单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

 最值图像点处有值,图像最低点处有最小值

 奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

 方程的根

 ▼

 函数图像与x轴交点横坐标

 ▼

 不等式解集端点

17、一元二次不等式的解法

 一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

 二次化为正

 ▼

 判别且求根

 ▼

 画出示意图

 ▼

 解集横轴中

18、一元二次方程根的讨论

 一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

 题意

 ▼

 二次函数图像

 ▼

 不等式组

 不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19、基本函数在区间上的值域

 我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

 (1)定义域没有特别限制时---记忆法或结论法;

 (2)定义域有特别限制时---图像截断法,一般思路是:

 画出图像

 ▼

 截出一断

 ▼

 得出结论

20、最值型应用题的解法

 应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

 设变量

 ▼

 列函数

 ▼

 求最值

 ▼

 写结论

21、穿线法

 穿线法是解高次不等式和分式不等式的方法。其一般思路是:

 首项化正

 ▼

 求根标根

 ▼

 右上起穿

 ▼

 奇穿偶回

 注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

文章标签: # 函数 # 方法 # 不等式