您现在的位置是: 首页 > 热门专业 热门专业

2017年贵州高考数学(文科)试题及答案,2017贵州理数高考答案

tamoadmin 2024-06-02 人已围观

简介1.解析几何之目~用点差法破解:2020年理数全国卷A题20是750分。2020年贵州省高考依旧采用传统文理分科的高考模式,总分为750分。语文、数学、英语每科150分满分。文综包括政治、历史、地理三个科目,理综包括物理、化学、生物三个科目,文综、理综均150分满分。高考前减压方法1、说出压力。感觉千头万绪、不知所措时,找一位知心好友说出内心的恐惧和问题,有时所面临的问题并不严重,只是在心慌意乱时

1.解析几何之目~用点差法破解:2020年理数全国卷A题20

2017年贵州高考数学(文科)试题及答案,2017贵州理数高考答案

是750分。

2020年贵州省高考依旧采用传统文理分科的高考模式,总分为750分。语文、数学、英语每科150分满分。文综包括政治、历史、地理三个科目,理综包括物理、化学、生物三个科目,文综、理综均150分满分。

高考前减压方法

1、说出压力。感觉千头万绪、不知所措时,找一位知心好友说出内心的恐惧和问题,有时所面临的问题并不严重,只是在心慌意乱时无法冷静思考,如果能够通过听听别人的想法发现问题所在,找出解决方法,即可豁然开朗。

2、写出压力。当面对复杂却又无法逃避的问题时,不妨写出来,然后写出可能的解决方法,无论能否达成目标,此种宣泄方式也可以减轻内心的压力。

3、呼出压力。感觉压力重时,最简单最快速的方法就是深呼吸,也就是深深地吸一口气,然后闭气两三秒,再微微张开嘴巴,缓缓吐气。如此反复做几次,可使血液循环恢复正常,心跳减速,心情自然较为平静。

4、跑出压力。在户外找个清净的地方,慢跑或者步行20分钟,使全身的肌肉松弛,紧张压力随之而解。

5、唱出压力。喜欢唱歌的人,可以在感觉压力的时候唱一些自己喜欢的歌,抒发心情。

6、泡出压力。泡热水澡可以促进血液循环,使肌肉松弛,减轻压力。

解析几何之目~用点差法破解:2020年理数全国卷A题20

纵观整份试卷,考查难度基本与去年持平,计算量较去年下降不少,但对于知识的灵活运用的考查比以往提高不少。

买票速度就服这里,别不信

广告

试卷很好的覆盖了高中数学的主干知识,大多题目都是对基础概念和基本解题方法的考查,检查学生是否认真对待高中知识的学习和考前的复习。对于中档以上的学生,可以比较多的展示自己的数学基本功。

试卷的大多数题目都会让学生有亲切感,比如第2题,考查复数的模长,如果注意到复数模长乘积与复数乘积的模长之间关系的话就可以秒杀了,节省时间。第6题考查比较常规的余弦型函数图象性质,但我们课内练习的比较多的都是正弦型,余弦型函数练得不多,但是其实用诱导公式就可以变为我们熟悉的正弦了。还有17题解三角形,18概率统计应用,19题立体几何,23不等式选讲。都属于学生日常训练中常见的题型,只要基础扎实,就不难解决。

针对这一现象,建议同学们在复习的时候一定要先巩固基础再挑战难题,重视扎实而全面的一轮复习,千万不要好高骛远,也不要心存侥幸。特别是最后的选修内容二选一,强烈建议学生两题的常规题型都要会,给自己选择的机会,不要只练其中一题。

对于一些综合的题型,更重视思维能力,灵活运用基本模型,突出数学的本质。例如第11题,函数的比较综合的考法,可以从零点转为根进而转为交点来处理,结合着图象变化,复合函数图象的画法;也可以从偶函数平移的对称性出发。第12题,是新课标第一次把向量考在压轴的位置,但其实平时模拟的时候遇到过,可以标准的建系用坐标来处理;如果平时积累得多的话,可以用等系数和线秒杀。第16题,如果直接类比到正方体内,可以比较快速的得到结论,凭空想实在不好理思路。第20题,对于抛物线的问题我们课内重中之重强调过,设点坐标的形式可以缩减计算量,然后比较标准的向量处理圆的问题,也是强调过很多次的了。第21题,是一个非常经典的函数,我们在一开始讲导数就强调过,对数函数的重要切线,之后的不等式的处理也属于常规套路,对数相加转为真数相乘。

当然,对于综合题型,我们在日常的复习中,要重视知识点之间的结合,甚至于知识模块中的结合,重视数学思维的培养,不能把数学学成死记硬背,重在分析理解。只有深刻挖掘自己解题背后的思维内涵,才能不断训练自己更好的把握数学的本质,学好数学。

标签: 高中数学 高考真题 解析几何 数学思想与方法 点差法

已知 分别为椭圆 的左、右顶点, 为 的上顶点, . 为直线 上的动点, 与 的另一交点为 , 与 的另一交点为 .

(1) 求 的方程;

(2) 证明:直线 过定点。

解答第1问

先来解答基础性的第1问。

依题意可知: 三个点的坐标为: 代入题设条件可得:

的方程为:

第2问分析

解答高考数学题,有两条基本的路线(方向):其一,是向某些基本的模型(题型)靠拢;其二,是从基本的思想和方法出发进行分析。

本题我们采用路线二来解决,并用“自问自答”的方式来展示分析过程。

: 本题中有哪些对象?对象之间有何关联?

: 本题中,基本的对象有椭圆、直线、椭圆的弦。 是直线 上的动点;而 是椭圆上的定点。

: 如何证明一条直线过定点?

: 如果一个定点的坐标始终满足一个直线族(动直线的集合)的方程,则这个定点始终在这些变动的直线上;则直线过这个定点。

如果方程可以写成: ,则定点在 轴上,其坐标为 .

如果方程可以写成: ,则定点在 轴上,其坐标为 .

相对而言,多数人对第一种形式较为熟悉;而对第二种形式就生疏一些。命题人有时就在这点上作文章。

: 从几何角度分析,能够得出哪些结论?是否可以猜出定点的大致位置?

: 从对称性的角度考虑问题。 轴是椭圆 和直线 公共的对称轴。因此,对于直线 上的任一点 , 其关于 轴的对称点 也在这条直线上。

顺首这条思路往下走:假如我们把 换成 ,那么,直线 也就换成了 . 注意 和 是关于 轴对称的两条直线,它们的公共点必定在 轴上。

因此,本题中的定点一定在 轴上。这是一个重要的阶段性结论。可以帮助我们简化后面的计算。

: 从代数的角度分析,可以得出哪些结论?哪些量是已知的?哪些量是未知?哪些量是变化的?变化的量之间存在什么关联?

: 本题中,椭圆的方程已知(第1问的结论);点 是已知的定点; 是动点;

直线 是已知的定直线; 则是动直线。

注意: 这几个点都在椭圆上。所以,本题中可以找出多条椭圆的弦:

椭圆的弦是高中解析几何的重要研究对象。它具有以下性质:

: 椭圆的弦的性质:椭圆的弦的斜率与其中点的坐标存在一个简洁的联系。对于以原点为对称中心的椭圆,可以用公式表达如下: 或者:

上式中, 为弦 的中点; 代表原点。

这个性质,并不是定理,但是使用平方差法(又称点差法)可以迅速地推导得出,可以称为常用结论。在高考中,这个常用结论出现了多次。合理地猜想:这个性质对于解决眼前的问题也能发挥作用。

以上关系,对于本题中出现的众多的弦都是有效的。

由于 (也就是 ) 是椭圆的弦,根据弦的斜率就可以求出弦的中点。

同理,根据直线 的斜率,可以求出点 的坐标。

注意: 都是椭圆上的点,过这四点的弦有多条。这些弦的中点坐标存在联系。

是椭圆的长轴,其中点为原点 . 对于另外的几个中点可命名如下:记 中点为 , 记 中点为 , 记 中点为 ; 几个中点的坐标存在以下关系:

因此,如果有了 两点的坐标,就可以方便地求出点 的坐标。

如果算出点 的坐标,就可以求出直线 的斜率,并写出这条直线的点斜式方程。

如果求出直线 的方程,就可以算出所过定点的坐标,从而完成证明。

那么,直线 的斜率是多少呢?回答是:取决于动点 的坐标。这个坐标比较简单,只有一个变量,可以设为

借用函数及映射的符号,以上关系可以总结如下:

解题计划

理清以上关系之后,解答此题的路径(具体步骤)也就明确了:

1)引入参数 以表达动点 的坐标;

2)求直线 的斜率;

3)求中点 的坐标;

4)计算中点 的坐标;

5)计算直线 的斜率;

6)写出直线 的点斜式方程;

7)求出定点坐标;

解答第2问

因为椭圆 的方程为: ,若点 在该椭圆上,

则:

设点 坐标为: , 则直线 的斜率分别为:

1)当 , 则点 分别与点 重合,直线 与 轴重合。

2)当 :

两直线的方程为:

记 中点为 , 记 中点为 , 记 中点为 ; 则有:

代入直线方程可求出两个中点的坐标:

由于 中点为原点,而 中点分别为: , 所以:

同理可得:

方程为:

方程可化为: ;

综上所述,对 , 直线 一定经过定点 . 证明完毕。

微操指南

作为高考压轴题,除了考查大的思路,命题人还会安排一些小的关卡和障碍,考验考生的综合实力。

本题的特点在于:点 的坐标较为复杂,会令一部分人望而生畏,就此止步。

对这个关卡,可以用以下思路破解。

点斜式方程的标准形式如下:

在前面的分析中,我们从对称性角度已经得出结论:定点在 轴上,其坐标形式为

所以,我们采用点斜式方程的以下变形:

代入前面的计算结果可得:

以上推导过程有一定复杂度。顺利完成类似任务的关键在于:经过开头的分析,我们已经知道定点在 轴上,所以我们相信:看起来十分复杂的分母和复杂的分子一定可以约分,最后化简为一个简单的形式。

这种“方向感”需要在平时培养。假如缺乏方向感,一味地强调熟练,是难以完成任务的。

提炼与提高

2017年理科数学全国卷一题20也是“定点问题”,但两题的解法是有区别的。请注意比较。

文章标签: # 可以 # 直线 # 坐标