您现在的位置是: 首页 > 热门专业 热门专业

泰勒公式在高考中应用_泰勒公式在高考

tamoadmin 2024-06-01 人已围观

简介1.帕德近似在高考数学中的应用可以用,不过归纳法不容易拿到压轴题的满分。常用的高阶导数题目求导方法有:归纳法、利用已知的函数n阶导数公式、利用乘积函数的莱布尼兹公式、利用泰勒公式等。帕德近似在高考数学中的应用罗尔、拉格朗日、柯西中值定理,前一个是后一个的特例。我不知道这三个定理有什么用处,因为在函数表达式的导数可以很方便求出来的情况下,直接求导求值就可以了,不用说用这三个定理找有多少个零点等等,所

1.帕德近似在高考数学中的应用

泰勒公式在高考中应用_泰勒公式在高考

可以用,不过归纳法不容易拿到压轴题的满分。

常用的高阶导数题目求导方法有:归纳法、利用已知的函数n阶导数公式、利用乘积函数的莱布尼兹公式、利用泰勒公式等。

帕德近似在高考数学中的应用

罗尔、拉格朗日、柯西中值定理,前一个是后一个的特例。我不知道这三个定理有什么用处,因为在函数表达式的导数可以很方便求出来的情况下,直接求导求值就可以了,不用说用这三个定理找有多少个零点等等,所以感觉好像就是证明不等式的时候能用用,拉格朗日将(f(a)-f(b))/(a-b)换为f'(ξ),柯西定理将拉格朗日中(a-b)的部分变为相似的函数形式,也用来求不等式。

泰勒定理是将函数的某一点处及很小领域转为常数和不同阶无穷小之和。

洛必达法则用于无穷小之间的同阶,高阶,等阶的确定,即lim0/0时,不能计算。于是就降阶,还是lim0/0,再降阶,直到结果为0高阶,1等阶,c同阶,∞低阶。

而泰勒公式能用求0/0,正是将前面几阶为0的去掉,将高阶去掉,只保留有值的最低阶。若分子分母阶相同,即同阶就可以求c之比。

不知道你看懂没有。

帕德近似在高考数学中的应用如下:

帕德近似(Pade approximation)是有理函数逼近的一种方法。帕德近似就是是法国数学家亨利·帕德发明的有理多项式近似法。帕德近似往往比截断的泰勒级数准确,而且当泰勒级数不收敛时,帕德近似往往仍可行,所以多用于在计算机数学中。

也可用于大规模系统在频域的降阶,设G(s)是系统的传递函数,比较直到p+二次幂的系数,得到关于Gr S)系数的线性代数方程,求解得到Gr(s)的帕德近似计算简单,对次数低于p+r的多项式类型输人,简化模型和原系统输出相同。

王庆丰——用泰勒展开推导帕德逼近的举例与应用

在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)来命名的。

拉格朗日在1797年之前,最先提出带有余项的形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。

文章标签: # 泰勒 # 帕德 # 近似