您现在的位置是: 首页 > 热门专业 热门专业
高中向量高考经典大题及解析_高中数学向量高考
tamoadmin 2024-05-27 人已围观
简介1.高考数学:已知a(向量)=(1,0,-1),b(向量)(-1,1,2)则1.a(向量)-b(向量)与a(向量)夹角的余弦值为2.2017年高考数学平面向量必考知识点3.高考数学选择题向量 几 何4.高考向量部分答:1、如果知道这两个平面的法向量,就用这两个平面的法向量的点积除以两个法向量的模的积;得出两个法向量的余弦值。这个余弦值是两个平面角的负余弦值;如果平面角为a,这个余弦值就是cos(1
1.高考数学:已知a(向量)=(1,0,-1),b(向量)(-1,1,2)则1.a(向量)-b(向量)与a(向量)夹角的余弦值为
2.2017年高考数学平面向量必考知识点
3.高考数学选择题向量 几 何
4.高考向量部分
答:1、如果知道这两个平面的法向量,就用这两个平面的法向量的点积除以两个法向量的模的积;得出两个法向量的余弦值。这个余弦值是两个平面角的负余弦值;如果平面角为a,这个余弦值就是cos(180D-a)=-cosa。sina=√(1-cos^2a)(是正数-算数根);正切值:tana=sina/-cosa。
2、在不知道平面的法向量的条件,下找出两个平面的每一个平面的任意两条边(同一平面内的两条边只要是不相互垂直就可以);做出每条边的向量,同一平面内的两条向量的叉积就是这个平面的法向量(注意如果无法判断两面角是锐角还是钝角,按照右手系使法向量指向平面角的内部方向);然后求两个法向量的余弦值;其它同1。
高考数学:已知a(向量)=(1,0,-1),b(向量)(-1,1,2)则1.a(向量)-b(向量)与a(向量)夹角的余弦值为
由已知得|OC|=|OA|=|OB|=1,向量OA与向量OB的数量积=1*1*cos120°= -1/2,
将等式“OC向量=xOA向量+yOB向量”两边平方得:1=x^2-xy+y^2, 则1=(x+y)^2-3xy,
所以(x+y)^2=1+3xy≤1+3*(x+y)^2/4, 进而得(x+y)^2≤4,所以 x+y≤2,
故x+y的最大值为2.
2017年高考数学平面向量必考知识点
(1).a·b=|a|*|b|*cos0?(180?)=±√2
(2).∵向量a-向量b与向量a垂直
∴以[向量a-向量b]和向量a为直角边,向量b为斜边的直角三角形
∴cosθ=|a|/|b|=1/√2=√2/2===>θ=45?
高考数学选择题向量 几 何
平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。
高考数学必考知识点平面向量概念:
(1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。
(2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。
(3)单位向量:模为1个单位长度的向量
(4)平行向量:方向相同或相反的非零向量
(5)相等向量:长度相等且方向相同的向量
高考数学必考知识点平面向量数量积解析
1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2
2、平面向量数量积具有以下性质:
1、a?a=|a|2?0
2、a?b=b?a
3、k(a?b)=(ka)b=a(kb)
4、a?(b+c)=a?b+a?c
5、a?b=0<=>a?b
6、a=kb<=>a//b
7、e1?e2=|e1||e2|cos?
高考数学必考知识点平面向量加法解析
已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。
注:向量的加法满足所有的加法运算定律,如:交换律、结合律。
高考数学必考知识点平面向量减法解析
1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。
平面向量公式汇总
1、定比分点
定比分点公式(向量P1P=?向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=?向量PP2,?叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+?OP2)(1+?);(定比分点向量公式)
x=(x1+?x2)/(1+?),
y=(y1+?y2)/(1+?)。(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
2、三点共线定理
若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a?b的充要条件是 a?b=0。
a?b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.
设a=(x,y),b=(x',y')。
3、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
4、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即?共同起点,指向被减?
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
5、数乘向量
实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。
当?>0时,?a与a同方向;
当?<0时,?a与a反方向;
当?=0时,?a=0,方向任意。
当a=0时,对于任意实数?,都有?a=0。
注:按定义知,如果?a=0,那么?=0或a=0。
实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;
当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。
数与向量的乘法满足下面的运算律
结合律:(?a)?b=?(a?b)=(a?b)。
向量对于数的分配律(第一分配律):(?+?)a=?a+?a.
数对于向量的分配律(第二分配律):?(a+b)=?a+?b.
数乘向量的消去律:① 如果实数?0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。
6、向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉?
定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a?b=x?x'+y?y'。
向量的数量积的运算律
a?b=b?a(交换律);
(?a)?b=?(a?b)(关于数乘法的结合律);
(a+b)?c=a?c+b?c(分配律);
向量的数量积的性质
a?a=|a|的平方。
a?b 〈=〉a?b=0。
|a?b|?|a|?|b|。
7、向量的数量积与实数运算的主要不同点
(1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。
(2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。
(3)|a?b|?|a|?|b|
(4)由 |a|=|b| ,推不出 a=b或a=-b。
8、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。
(1)向量的向量积性质:
∣a?b∣是以a和b为边的平行四边形面积。
a?a=0。
a‖b〈=〉a?b=0。
(2)向量的向量积运算律
a?b=-b?a;
(?a)?b=?(a?b)=a?(?b);
(a+b)?c=a?c+b?c.
注:向量没有除法,?向量AB/向量CD?是没有意义的。
(3)向量的三角形不等式
∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;
① 当且仅当a、b反向时,左边取等号;
② 当且仅当a、b同向时,右边取等号。
∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;
高考向量部分
如图,设D为BC的中点
向量P0C*向量P0B=1/4[(向量P0B+P0C)^2-(P0B-P0C)^2]
?=1/4[(2P0D)^2-(2BD)^2]
?=P0D^2-BD^2
同理,向量PC*向量PB=PD^2-BD^2
又因为向量PC*向量PB》向量P0C*向量P0B
即 ?PD^2-BD^2》P0D^2-BD^2
即 PD》P0D
又因为PD与AB垂直时达最小
即P0D垂直于AB
又因为△P0DB相似△ABC
? 有AB/DB=2DB/P0B
?DB=根号3
在△PoDB中,DP0^2=(根号3)^2-1^2
? 解得,DP0=根号2
又h/DP0=CB/DB
解得h=2根号2,
即三角形的高为2根号2
个人觉得向量还是很重要的一个章节,向量能够很好的沟通数与形,在高中数学中一直扮演着工具角色。向量内容主要包括平面向量与空间向量,学习的过程与思路相仿。平面向量的学习可以先从认识向量开始,了解向量的矢量性,掌握向量的线性运算法则,理解并能够运用平面向量的基本定理进行向量表示。向量的数量积,是向量运算考察的一个重要方向,历年高考几乎都会涉及,尤其是引入坐标运算后,向量的数量积变得更为便捷。向量在三角形中的应用需特别留意。空间向量的学习,主要为处理空间的边角关系服务,所以在熟悉了立体几何中传统的处理方法后,要能够将其翻译为向量语言,利用空间重新向量解决边角问题,这是解析法的一个重要体现。总之,数学因为有了向量的翅膀,飞的会更高,飞的会更快!希望能够给你带来些许帮助。