您现在的位置是: 首页 > 教育趋势 教育趋势

高考数学导数专题_高考数学导数专题总结

tamoadmin 2024-06-04 人已围观

简介1.数学导数问题2.高中数学导数题重点第三个问3.高考数学一道关于导数一个步骤的问题4.高考数学的导数是什么意思思考第三问我们要看图像,由(1),(2)问易得:f(x)的极大值点和极小值点分别为:A(-k,4k^2/e), B(k,0),且在<-k 和>k上单调递增,在-k到k上单调递减。于是很自然的(你要自己画一个图,问交点的问题通常要通过图形来辅助思考)一定有一个区间L(比如(-k

1.数学导数问题

2.高中数学导数题重点第三个问

3.高考数学一道关于导数一个步骤的问题

4.高考数学的导数是什么意思

高考数学导数专题_高考数学导数专题总结

思考第三问我们要看图像,由(1),(2)问易得:f(x)的极大值点和极小值点分别为:A(-k,4k^2/e), B(k,0),且在<-k 和>k上单调递增,在-k到k上单调递减。于是很自然的(你要自己画一个图,问交点的问题通常要通过图形来辅助思考)一定有一个区间L(比如(-k/2,k/2)或者[a,b]之类的开集、闭集、左开右闭或左闭右开的集合)使得当m?L时,f(x)与y=m有三个不同的交点。

这时我们知道在[-k,k]上,f(x)与y=m一定有一个交点,这样我们只需考虑在x>k和x< -k上f(x)与y=m何时有交点。

x>k时。由于f(x)连续且f(x)在k>=0上的极小值就等于0,因此只需考虑f(x)在k>0上的最大值。f(x)在k>0上单调递增,若对于t是一个实数,若存在x>k使得f(x)=t,则对于任意的0<y0<t, 都存在x0使得:f(x0)=y0。(这件事你看图就能明白,要证明需要大学知识,你能理解就好)。于是我们如果找到一个很大的x, 使得f(x)>4k^2/e, 则说明当m<=4k^2/e时,f(x)与y=m在x>k上必有交点。

于是,我们总能取到一个正整数N,使得:N>2k(只要在数轴上一个一个的数下去,这件事是办得到的,因为2k与2k+1是一个有限的数),令x=N, 于是:

f(x)=(N-k)^2 e^(N/k)

>k^2 e^2

>4k^2

>4k^2/e.

这样我们知道,只要0<m<=4k^2/e, 则f(x)与y=m在x>k上就有交点。

x<-k。易知0<f(x)<4k^2/e。现在只需考虑是否存在t>0使得在x< -k上,f(x)>=t总成立。同样的我们知道:在x< -k上,对于0<a<b, 若存在x1,x2< -k, f(x1)=a, f(x2)=b, 则对于任意的y0:a<y0<b, 必存在x0使得:f(x)=y0。于是对于任意的正数t,一定存在正整数N使得:1/N<t(实际上就是:N>1/t, 这也是可以做到的).

此时遇到问题:当x趋近于负无穷时,(x-k)^2趋近于正无穷,e^(x/k)趋近于0, 则它们相乘要趋近于什么呢?由于f(x)=(x-k)^2 e^(x/k)=(x-k)^2/(e(-x/k)), 那我们就考虑g=|(x-k)^2|=(x-k)^2与h=|e(-x/k)|的大小就好了。

针对于这道题的情况我们可以考察这样一件事:对于任意的正整数n, 存在一个正数x0,对于任意的x>n, e^x>x^n。(可以对n用数学归纳法)。

于是我们得到:存在x0>k>0, 当x<-x0<-k时:

|f(x)|=|(x-k)^2 e^(x/k)|

=|(x-k)^2/x^3|*|x^3/e(-x/k)|

<|(x-k)^2/x^3| -->0, x趋近于负无穷时。

从而我们知道:当0<m<4k^2/e时,在x<-k上,f(x)与y=m必有交点。

综上:若要f(x)与y=m必有3个交点则:0<m<4k^2/e

思路:找到极大值点、极小值点、升降区间,画图,比较,再分析得到结论。

数学导数问题

解:

1.

f'(x)=1-1/(1+x)------注意:这是导数;

所以:x>0时,原函数恒增;

又因为f(0)=0;

所以f(x)>0 在x>0时恒成立;

另:

1>a1>0;

所以:a2=f(a1)>0;

a3=f(a2)>0;

…… 易得:an=f(an-1)>0 n>=2 且n是整数 ;

(这里如果你觉得不稳妥的话可以用数学归纳法证明);

另:

由题易得:an-a(n+1)=an-[an-ln(1+an)]=ln(1+an);

所以,只需要解出ln(1+an)>0即可得出:an>a(n+1);

又因为:an>0 (已解出);

所以:ln(1+an)>0;

即:an-a(n+1) >0;

即:a(n+1)<an<a1<1;

所以:0<a(n+1)<an<1。

2.

原式等价于:an-ln(1+an)<an^2/2;

设:F(an)=(an^2)/2 -an+ln(1+an);

(注意:在这里需要把an当做是一个连续的大于零的自变量而非间隔的单值)

则 F'(an)=an-1+1/(1+an)=(1+an)-2+1/(1+an)----恒等变换;这是导数;

(这一步的目的是变换成对号函数,这样好求解)

另设:t=1+an;

则:F'(x)=t-2+1/t>=0;

所以:F(x)恒增

(注:这里要是觉得不稳妥的话可以去证明一下导数不恒等于0,其实这里很明显导数是0时仅仅是个驻点而已);

又因为F(0)=0;

an>0(已证明);

所以F(an)>0;

即:F(an)=(an^2)/2 -an+ln(1+an)>0;

即:an-ln(1+an)<an^2/2;

所以原式成立。

3.咕... 这一问没看明白你打的题目~...~|||

若是:b(n+1)=1/[2(n+1)bn]

先容我想想...

(我的惯用思路是把an的通项公式解出来,再把不等式移项到同侧,化函数解...不过,这里有个排列数...这样解不容易。另外一个思路就是想办法放缩,找到合适的中间量就ok了。亦或是用三段论,这样有时非常之简单。我一般用的就是这仨思路,这一问容我想想,我还没见过带排列数的不等式求解来着。)

我们老班经常会用一个函数跟三段论相结合的方法

就是先比较初值再利用比例把后面的相邻项之间的比算出来;

然后就利用单调性解决掉喽。

我先试试吧,昨天死活没算出来。

先用我们老班那方法吧,应该方便:

n=2时,易得:b2>a2*2;

(这里直接比较就可以,移到同侧和零比就行)

由题易得:b(n+1)/bn =(n+1)/2

----------a(n+1)*(n+1)!/an*n! =(n+1)*[an-ln(1+an)]/an ;

另:

设:g(x)= -ln(1+an)+ an/2;

则:g'(x)= -1/(1+an)+ 1/2;

0<an<1;

易得:g'(x)<0,g(x)恒减;

又因为:g(0)=0;

所以:g(an)<0;

所以:[an-ln(1+an)]/an <1/2;

所以:a(n+1)/an =(n+1)*[an-ln(1+an)]/an<(n+1)/2;

所以:a(n+1)*(n+1)!/an*n!<b(n+1)/bn;

又因为:n>=2且b2>a2*2;

所以:an*n!<bn。

答:1.0<a(n+1)<an<1;2.an+1<an^2/2;3.an*n!<bn。

题解过程见上。

啊~~~~~~~~~~~~~竟然这样就行...~|||

真疯了...~昨天我在网吧对着电脑一个小时就硬生生的没能做出来~~~泪奔啊~~~

怪不得老班成天说我...~|||

呵呵,好了,大功告成:)

高中数学导数题重点第三个问

导数的应用 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.设在[0,1]上函数f(x)的图象是连续的,且f′(x)>0,则下列关系一定成立的是A.f(0)<0 B.f(1)>0 C.f(1)>f(0) D.f(1)<f(0)分析:本题主要考查利用函数的导数来研究函数的性质.解:因为f′(x)>0,所以函数f(x)在区间[0,1]上是增函数.又函数f(x)的图象是连续的,所以f(1)>f(0).但f(0)、f(1)与0的大小是不确定的.答案:C2.函数y=xlnx在区间(0,1)上是A. 单调增函数 B. 单调减函数C.在(0, )上是减函数,在( ,1)上是增函数D.在(0, )上是增函数,在( ,1)上是减函数分析:本题主要考查利用求导方法判定函数在给定区间上的单调性.解:y′=lnx+1,当y′>0时,解得x> .又x∈(0,1),∴ <x<1时,函数y=xlnx为单调增函数.同理,由y′<0且x∈(0,1)得0<x< ,此时函数y=xlnx为单调减函数.故应选C.答案:C3.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如下图所示,则y=f(x)的图象最有可能是分析:本题主要考查函数的导数与图象结合处理问题.要求对导数的含义有深刻理解、应用的能力.解:函数的增减性由导数的符号反映出来.由导函数的图象可大略知道函数的图象.由导函数图象知:函数在(-∞,0)上递增,在(0,2)上递减,在(2,+∞)上递增;函数f(x)在x=0处取得极大值,在x=2处取得极小值.答案:C4.已知函数f(x)=3x3-5x+1,则f′(x)是A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数分析:本题考查导数函数的奇偶性.解题的关键是对函数求导,但求导不改变函数的定 义域.解:∵f(x)=3x3-5x+1,∴f′(x)=9x2-5(x∈R). ∵f′(-x)=f′(x),∴f′(x)是偶函数.答案:B5.若函数y=x3-3bx+3b在(0,1)内有极小值,则A.0<b<1 B.b<1 C.b>0 D.b< 分析:本题主要考查应用导数解决有关极值与参数的范围问题.解:对于可导函数而言,极值点是导数为零的点.因为函数在(0,1)内有极小值,所以极值点在(0,1)上.令y′=3x2-3b=0,得x2=b,显然b>0, ∴x=± .又∵x∈(0,1), ∴0< <1.∴0<b<1.答案:A6.函数y=x3+ 在(0,+∞)上的最小值为A.4 B.5 C.3 D.1分析:本题主要考查应用导数求函数的最值.解:y′=3x2- ,令y′=3x2- =0,即x2- =0,解得x=±1.由于x>0,所以x=1.在(0, +∞)上,由于只有一个极小值,所以它也是最小值,从而函数在(0,+∞)上的最小值为y=f(1)=4.答案:A7.若函数f(x)在[a,b]上连续,在(a,b)内可导,且x∈(a,b)时,f′(x)>0,又f(a)<0,则A.f(x)在[a,b]上单调递增,且f(b)>0B.f(x)在[a,b]上单调递增,且f(b)<0C.f(x)在[a,b]上单调递减,且f(b)<0D.f(x)在[a,b]上单调递增,但f(b)的符号无法判断分析:本题主要考查函数的导数与单调性的关系.解:若函数f(x)在(a,b)内可导,且x∈(a,b)时,f′(x)>0,则函数在[a,b]内为增函数.∵f(a)<0, ∴f(b)可正可负,也可为零,即f(b)的符号无法判断.答案:D8.已知y= sin2x+sinx+3,那么y′是A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数C.仅有最大值的偶函数 D.非奇非偶函数分析:本题主要考查导函数的性质.解:y′=( sin2x)′+(sinx)′= (cos2x)(2x)′+cosx=cos2x+cosx.不妨设f(x)=cos2x+cosx,∵f(-x)=cos(-2x)+cos(-x)=cos2x+cosx=f(x), ∴y′为偶函数.又由于y′=2cos2x-1+cosx=2cos2x+cosx-1,令t=cosx(-1≤t≤1),∴y′=2t2+t-1=2(t+ )2- . ∴y′max=2, y′min=- .故选B.答案:B9.函数y=ax3-x在(-∞,+∞)上是减函数,则A.a= B.a=1 C.a=2 D.a<0分析:本题考查常见函数的导数及其应用.可以采用解选择题的常用方法——验证法.解:由y′=3ax2-1,当a= 时,y′=x2-1,如果x>1,则y′>0与条件不符.同样可判断a=1,a=2时也不符合题意.当a<0时,y′=3ax2-1恒小于0,则原函数在(-∞,+∞)上是减函数.故选D.答案:D10.已知抛物线y2=2px(p>0)与一个定点M(p,p),则抛物线上与M点的距离最小的点为A.(0,0) B.( ,p) C.( ) D.( )分析:本题考查利用函数的导数求解函数的最值.首先建立关于距离的目标函数关系式,然后合理地选取变量,通过求导数的方法求与最值有关的问题.本题也可以用解析几何中数形结合法求解.解:设抛物线上的任意点(x,y)到点M的距离为d,则有d2=(p-x)2+(p-y)2=(p- )2+(p-y)2.∴(d2)′=2(p- )(- )+2(p-y)(-1)= -2p.令(d2)′y=0,即 -2p=0,解得y= p.这是函数在定义域内的唯一极值点,所以必是最值点.代入抛物线方程得 .所以点( )为所求的点.答案:D第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)11.函数y=sin2x的单调递减区间是__________.分析:本题考查导数在三角问题上的应用.解法一:y′=2sinxcosx=sin2x. 令y′<0,即sin2x<0,∴2kπ-π<2x<2kπ,k∈Z. ∴kπ- <x<kπ,k∈Z.∴函数y=sin2x的单调递减区间是(kπ- ,kπ),k∈Z.解法二:y=sin2x=- cos2x+ ,函数的减区间即cos2x的增区间,由2kπ-π<2x<2kπ, k∈Z,得kπ- <x<kπ,k∈Z.∴函数y=sin2x的单调递减区间是(kπ- ,kπ),k∈Z.答案:(kπ- ,kπ),k∈Z12.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g′(x)+f′(x)g(x)>0且g(-3)=0,则不等式f(x)g(x)<0的解集是__________.分析:本题主要考查导数的运算法则及函数的性质.利用f(x)g(x)构造一个新函数 (x)=f(x)g(x),利用 (x)的性质解决问题.解:设 (x)=f(x)g(x),则 ′(x)=f(x)g′(x)+f′(x)g(x)>0.∴ (x)在(-∞,0)上是增函数且 (-3)=0.又∵f(x)为奇函数,g(x)为偶函数, ∴ (x)=f(x)g(x)为奇函数.∴ (x)在(0,+∞)上也是增函数且 (3)=0.当x<-3时, (x)< (-3)=0,即f(x)g(x)<0;当-3<x<0时, (x)> (-3)=0,即f(x)g(x)>0.同理,当0<x<3时, f(x)g(x)<0;当x>3时,f(x)g(x)>0.∴f(x)g(x)<0的解集为(-∞,-3)∪(0,3).答案:(-∞,-3)∪(0,3)13.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是_______m2.分析:本题考查如何求函数的最值问题,其关键是建立目标函数.解:设场地的长为x m,则宽为(8-x) m,有S=x(8-x)=-x2+8x,x∈(0,8).令S′=-2x+8=0,得x=4.∵S在(0,8)上只有一个极值点, ∴它必是最值点,即Smax=16.此题也可用配方法、均值不等式法求最值.答案:1614.过曲线y=lnx上的点P的切线平行于直线y= x+2,则点P的坐标是__________.分析:本题考查导数的几何意义.本题可采取逆向思维,构造关于切点横坐标的方程.解:因直线y= x+2的斜率为k= , 又因y=lnx,所以y′= = .所以x=2.将x=2代入曲线y=lnx的方程,得y=ln2. 所以点P的坐标是(2,ln2).答案:(2,ln2)三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题10分)某工厂需要建一个面积为512 m2的矩形堆料场,一边可以利用原有的墙壁,问堆料场的长和宽各为多少时,才能使砌墙所用的材料最省?分析:本题考查如何求函数的最值问题,其关键是建立目标函数.解:要求材料最省就是要求新砌的墙壁总长度最短.如下图所示,设场地一边长为x m,则另一边长为 m,因此新墙总长度L=2x+ (x>0), 4分L′=2- .令L′=2- =0,得x=16或x=-16. 6分∵x>0,∴x=16. 7分∵L在(0,+∞)上只有一个极值点,∴它必是最小值点.∵x=16,∴ =32. 9分故当堆料场的宽为16 m,长为32 m时,可使砌墙所用的材料最省. 10分注:本题也可利用均值不等式求解.16.(本小题12分)已知函数y=ax与y=- 在区间(0,+∞)上都是减函数,试确定函数y=ax3+bx2+5的单调区间.分析:本题主要考查利用导数确定函数的单调区间.可先由函数y=ax与y=- 的单调性确定a、b的取值范围,再根据a、b的取值范围去确定函数y=ax3+bx2+5的单调区间.解:∵函数y=ax与y=- 在区间(0,+∞)上是减函数,∴a<0,b<0. 3分由y=ax3+bx2+5,得y′=3ax2+2bx. 6分令y′>0,即3ax2+2bx>0,∴- <x<0.因此当x∈(- ,0)时,函数为增函数; 8分令y′<0,即3ax2+2bx<0,∴x<- 或x>0. 10分因此当x∈(-∞,- )时,函数为减函数;x∈(0,+∞)时,函数也为减函数. 12分17.(本小题10分)当x>0时,求证:ex>x+1.分析:本题考查利用导数证明不等式的问题.解题的关键是由导数确定单调区间,由函数在某一区间上的单调性构造不等式求解.证明:不妨设f(x)=ex-x-1, 3分则f′(x)=(ex)′-(x)′=ex-1. 6分∵x>0,∴ex>1,ex-1>0.∴f′(x)>0,即f(x)在(0,+∞)上是增函数. 8分∴f(x)>f(0),即ex-x-1>e0-1=0.∴ex>x+1. 10分18.(本小题10分)如右图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于点O、A,直线x=t(0<t<1)与曲线C1、C2分别相交于点B、D.(1)写出四边形ABOD的面积S与t的函数关系S=f(t);(2)讨论f(t)的单调性,并求f(t)的最大值.分析:本题主要考查如何以四边形的面积为载体构造目标函数、函数的导数、函数的单调性等基础知识,考查运算能力和利用导数研究函数的单调性,从而确定函数的最值.解:(1)解方程组 得交点O、A的坐标分别为(0,0),(1,1). 2分f(t)=S△ABD+S△OBD= |BD|·|1-0|= |BD|= (-2t3+3t-t3)= (-3t3+3t),即f(t)=- (t3-t)(0<t<1). 4分(2)f′(t)=- . 6分令f′(t)=- =0,得 (舍去).当0<t< 时,f′(t)>0,从而f(t)在区间(0, )上是增函数; 8分当 <t<1时,f′(t)<0,从而f(t)在区间( ,1)上是减函数.所以当t= 时,f(t)有最大值f( )= . 10分19.(本小题12分)某工厂生产某种产品,已知该产品的月生产量x(t)与每吨产品的价格p(元/t)之间的关系式为:p=24200- x2,且生产x t的成本为:R=50000+200x(元).问该产品每月生产多少吨才能使利润达到最大?最大利润是多少?(利润=收入-成本)分析:本题主要考查利用导数求函数的最值.根据题意,列出函数关系式,求导求解.解:每月生产x吨时的利润为f(x)=(24200- x2)x-(50000+200x)=- x3+24000x-50000(x≥0). 4分由f′(x)=- x2+24000=0,解得x1=200,x2=-200(舍去). 8分∵f(x)在[0,+∞)内只有一个点x1=200使f′(x)=0,∴它就是最大值点.f(x)的最大值为f(200)=3150000(元).∴每月生产200 t才能使利润达到最大,最大利润是315万元. 12分

高考数学一道关于导数一个步骤的问题

。先用分区间法取绝对值:即设x>a,x<=a.分两种情况,每种情况算出a的取值范围,最后求并集。方法:求解f(x)的最大值,最小值;求解g(x)的最大值,最小值。g(x)的最小值大于f(x)的最小值,g(x)的最大值小于f(x)的最大值。利用g(x)在定义域内是单调函数这一隐含条件缩小a的范围。解题思路是最重要的

先评论二楼?高考题目也思路好了,

高考数学的导数是什么意思

对C1来说,y'=2x+2在x1点的切线斜率是2x1+2

对C2来说,y'=-2x 在x2点的切线斜率是 -2x2

因是公切线,所以斜率相等,即

2x1+2=-2x2

移项就是你看到的结果: x1+x2=-1

高考数学中的导数是一个基本概念,指的是函数在某个点处的变化率,也就是该点处的斜率。在实际应用中,导数常用于求解方程的极值和最大值最小值,以及描述物理、化学等领域中的变化规律。因此,掌握导数的概念和运用方法对于数学和科学相关领域的学习和研究都至关重要。

导数的计算方法有多种,其中比较常用的是使用极限的定义来求解。根据极限的定义,如果一个函数在某个点处导数存在,则它在该点的导数等于该点的函数值与函数值微小变化量的比值所趋近的极限。如果函数在某个点处导数不存在,则该点被称为函数的不可导点。通过逐步掌握导数的计算方法,可以提高我们对函数的理解和计算能力。

导数在高等数学和各个实际应用领域中都有广泛的应用。例如在经济和金融领域中,求解函数的导数可以描述市场价格的变化趋势;在自然科学中,导数可以用于分析曲线的切线和速度、加速度等蕴含的物理意义;在工程技术领域,导数可以用于描述声音、电磁波和光线的变化规律。因此,学习导数的应用不仅有助于学术理论的深入,更能帮助我们更好地理解和掌握实际应用的相关知识。

文章标签: # lt # 函数 # gt