您现在的位置是: 首页 > 教育科技 教育科技

高考模型解题法,数学高考模型

tamoadmin 2024-06-21 人已围观

简介1.全国卷高中数学高考题解答方法2.高中数学解题技巧与方法3.2019年高考数学答题技巧套路模板和时间分配方法注意事项4.高中物理题型及解答技巧5.提分王模型解题法,最新版是哪一年6.高中数学大题解题方法与技巧7.高考物理大题解题技巧2023河北高考物理试题难度适中。1、理科试卷难度:2023河北高考物理试题答题时尽量保证证明过程及计算方法大众化。解题时,使用通用符号,不易吃亏。有些考生为图简便使

1.全国卷高中数学高考题解答方法

2.高中数学解题技巧与方法

3.2019年高考数学答题技巧套路模板和时间分配方法注意事项

4.高中物理题型及解答技巧

5.提分王模型解题法,最新版是哪一年

6.高中数学大题解题方法与技巧

7.高考物理大题解题技巧

高考模型解题法,数学高考模型

2023河北高考物理试题难度适中。

1、理科试卷难度:

2023河北高考物理试题答题时尽量保证证明过程及计算方法大众化。解题时,使用通用符号,不易吃亏。有些考生为图简便使用一些特殊方法,可一旦结果有错,就会影响得分。

河北高考物理理科试题的压轴题还是非常难。高考数学最大的看点,就是压轴题,因为一般就是靠它来拉开分差。很多河北考生在进考场的时候,就做好了心理准备,有放弃的想法。‘

2、物理答题策略:

解选择、填空题的基本原则是“小题不可大做”。直接从题干出发考虑,探求结果,从题干和选择联合考虑,从选择出发探求满足题干的条件。

解填空题基本方法为直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。

物理解题方法:

1、注意捕捉关键词语:

读题时,不能只注意给出具体数字或字母的已知条件,还应扣住物理题中常用的一些关键用语,如“最多”“至少”“刚好”“缓慢”“瞬间”“速度最大”等词语。

2、挖掘隐含条件:

物理题中给出的条件,很多是间接或隐含的,需要通过分析才能挖掘出来,这常常是解题的关键点。

有些隐含条件隐蔽得并不深,挖掘起来很容易,但有的就会有难度,注重挖掘特殊条件、临界条件、极限条件、约束条件,准确分析运动过程中的受力情况,推断运动模型、临界条件能量转化的情况。

3、答题过程要整洁美观。

比如要将你的解题过程转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生忽视。因此,卷面上大量出现“会而不对”“对而不全”的情况。

如立体几何论证中的“跳步”,使很多人丢失得分,代数论证中的“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转换为“文字语言”,尽管考生“心中有数”却说不清楚,因此得分少。

全国卷高中数学高考题解答方法

排列组合问题的解题策略

关键词: 排列组合,解题策略

一、相临问题——捆绑法

例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?

解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。

评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。

二、不相临问题——选空插入法

例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?

解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为: 种 .

评注:若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。

三、复杂问题——总体排除法

在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.

解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有 -3=32个.

四、特殊元素——优先考虑法

对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法 种.

解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有 种,而其余学生的排法有 种,所以共有 =72种不同的排法.

例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种.

解:由于第一、三、五位置特殊,只能安排主力队员,有 种排法,而其余7名队员选出2名安排在第二、四位置,有 种排法,所以不同的出场安排共有 =252种.

五、多元问题——分类讨论法

对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A )

A.42 B.30 C.20 D.12

解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。

例7.(2003年全国高考试题)如图, 一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答)

解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色. 用三种颜色着色有 =24种方法, 用四种颜色着色有 =48种方法,从而共有24+48=72种方法,应填72.

六、混合问题——先选后排法

对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.

例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )

A. 种 B. 种

C. 种 D. 种

解:本试题属于均分组问题。 则12名同学均分成3组共有 种方法,分配到三个不同的路口的不同的分配方案共有: 种,故选A。

例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )

A.24种 B.18种 C.12种 D.6种

解:先选后排,分步实施. 由题意,不同的选法有: C32种,不同的排法有: A31·A22,故不同的种植方法共有A31·C32·A22=12,故应选C.

七.相同元素分配——档板分隔法

例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?

本题考查组合问题。

解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有 种插法,即有15种分法。

总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。

具体说,解排列组合的应用题,通常有以下途径:

(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素。

(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置。

(3)先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数。

排列组合问题的解题方略

湖北省安陆市第二高级中学 张征洪

排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。

首先,谈谈排列组合综合问题的一般解题规律:

1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。

2)排列与组合定义相近,它们的区别在于是否与顺序有关。

3)复杂的排列问题常常通过试验、画 “树图 ”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。

4)按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。

5)处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。

6)在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。

总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。

其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。

一.特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。

例1、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。

A. 24个 B.30个 C.40个 D.60个

[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有A42个,2)0不排在末尾时,则有C21 A31A31个,由分数计数原理,共有偶数A42 + C21 A31A31=30个,选B。

二.总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。如例1中,也可用此法解答:五个数字组成三位数的全排列有A53个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要排除,故有A53--3A42+ C21A31=30个偶数。

三.合理分类与准确分步含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。

四.相邻问题用捆绑法:在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.

例2、有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种.(结果用数值表示)

解:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有A55种排法;又3本数学书有A33种排法,2本外语书有A22种排法;根据分步计数原理共有排法A55 A33 A22=1440(种).

注:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题.

五.不相邻问题用“插空法”:不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开.解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.

例3、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个.(用数字作答)

解:由于要求1与2相邻,2与4相邻,可将1、2、4这三个数字捆绑在一起形成一个大元素,这个大元素的内部中间只能排2,两边排1和4,因此大元素内部共有A22种排法,再把5与6也捆绑成一个大元素,其内部也有A22种排法,与数字3共计三个元素,先将这三个元素排好,共有A33种排法,再从前面排好的三个元素形成的间隙及两端共四个位置中任选两个,把要求不相邻的数字7和8插入即可,共有A42种插法,所以符合条件的八位数共有A22 A22 A33 A42=288(种).

注:运用“插空法”解决不相邻问题时,要注意欲插入的位置是否包含两端位置.

六.顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。

例4、6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种?

分析:不考虑附加条件,排队方法有A66种,而其中甲、乙、丙的A33种排法中只有一种符合条件。故符合条件的排法有A66 ÷A33 =120种。(或A63种)

例5、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。

解:先在7个位置中任取4个给男生,有A74 种排法,余下的3个位置给女生,只有一种排法,故有A74 种排法。(也可以是A77 ÷A33种)

七.分排问题用“直排法”:把几个元素排成若干排的问题,可采用统一排成一排的排法来处理。

例6、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?

分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有A77种。

八.逐个试验法:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。

例7.将数字1,2,3,4填入标号为1,2,3,4的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( )

A.6 B.9 C.11 D.23

解:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B

九、构造模型 “隔板法”

对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。

例8、方程a+b+c+d=12有多少组正整数解?

分析:建立隔板模型:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,每一种分法所得4堆球的各堆球的数目,对应为a、b、c、d的一组正整解,故原方程的正整数解的组数共有C113 .

又如方程a+b+c+d=12非负整数解的个数,可用此法解。

十.正难则反——排除法

对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法.

例9、从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有( )种.

A.140种 B.80种 C.70种 D.35种

解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合题意,因此符合题意的抽取方法有C93-C43-C53=70(种),故选C.

注:这种方法适用于反面的情况明确且易于计算的习题.

十一.逐步探索法:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律

例10、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。

解:两个数相加中以较小的数为被加数,1+100>100,1为被加数时有1种,2为被加数有2种,…,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,…,99为被捕加数的只有1种,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500种

十二.一一对应法:

例11.在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比赛几场?

解:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故比赛99场。

应该指出的是,以上介绍的各种方法是解决一般排列组合问题常用方法,并非绝对的。数学是一门非常灵活的课程,同一问题有时会有多种解法,这时,要认真思考和分析,灵活选择最佳方法.还有像多元问题“分类法”、环排问题“线排法”、“等概率法”等在此不赘述了。

高中数学解题技巧与方法

高考,不仅是对知识的检阅,也是对考生心态的一种考验。同学们只要放松心情,保持好心态,一定能考出好成绩。这次我给大家整理了全国卷高中数学高考题解答 方法 ,供大家阅读参考。

目录

全国卷高中数学高考题解答方法

高考数学填空题答题技巧

高考数学解答题技巧

全国卷高中数学高考题解答方法

1、小题不能大做;

2、不要不管选项;

3、能定性分析就不要定量计算;

4、能特值法就不要常规计算;

5、能间接解就不要直接解;

6、能排除的先排除缩小选择范围;

7、分析计算一半后直接选选项;

8、三个相似选相似。可以利用简便方法进行答题。

<<<

高考数学填空题答题技巧

1、直接法:这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

2、特殊化法:当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。

3、数形结合法:对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

4、等价转化法:通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。

5、图像法:借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

6、构造法:在解题时有时需要根据题目的具体情况,来设计新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。

<<<

高考数学解答题技巧

1、三角变换与三角函数的性质问题

解题方法:①不同角化同角;②降幂扩角 ;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。

答题步骤:

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

2、解三角形问题

解题方法:

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

答题步骤:

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

3、数列的通项、求和问题

解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。

答题步骤:

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

4、离散型随机变量的均值与方差

解题思路:

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

答题步骤:

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

5、圆锥曲线中的范围问题

解题思路;①设方程;②解系数;③得结论。

答题步骤:

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

6、解析几何中的探索性问题

解题思路:①一般先假设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的假设代入已知条件求解;③得出结论。

答题步骤:

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果, 经验 证成立则肯。 定假设;若推出矛盾则否定假设。

<<<

全国卷高中数学高考题解答方法相关 文章 :

★ 全国卷数学选择题答题规律技巧

★ 解答高考数学试题策略及答题思路

★ 全国卷高考数学技巧选择题

★ 全国卷数学答题题型

★ 高考数学题型与技巧

★ 高考数学试卷设计及解题思路介绍

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

2019年高考数学答题技巧套路模板和时间分配方法注意事项

对于两个实力相当的同学,在考试中某些解题策略技巧使用的好坏,往往会导致两人最后的成绩有很大的差距。

一、选择题解题策略

数学选择题具有概栝性强,知识覆盖面广,小巧灵活,有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。

解选择题的基本要求是熟练准确,灵活快速,方法得当,出奇制胜。解题一般有三种思路:一是从题干出发考虑,探求结果;二是题干和选择支联合考虑;三是从选择支出发探求满足题干的条件。 选择题属易题(个别为中档题),解题基本原则是:“小题不可大做”。

1、直接法:涉及数学定理、定义、法则、公式的问题,常从题设条件出发,通过运算或推理,直接求得结论;再与选择支对照。

例:已知函数y=f(x)存在反函数y=g(x),若f(3)= -1,则函数y=g(x-1)的图像在下列各点中必经过( )

A.(-2,3) B.(0,3) C.(2,-1) D.(4,-1)

解:由题意函数y=f(x)图像过点(3,-1),它的反函数y=g(x)的图像经过点(-1,3),由此可得函数y=g(x-1)的图像经过点(0,3),故选B。

2、筛选法(排除法、淘汰法):充分运用选择题中单选的特征,通过分析、推理、计算、判断,逐一排除错误支,得到正确支的解法。

例.若x为三角形中的最小内角,则函数y=sinx+cosx值域是( )

A.(1,]B.(0,] C.[,] D.(,]

解: 因x为三角形中的最小内角,故x∈(0, ),由此可得y=sinx+cosx>1,排除错误支B,C,D,应选A。

3、图象法(数形结合):通过数形结合的思维过程,借于图形直观,迅速做出选择的方法。

例.已知α、β都是第二象限角,且cosα>cosβ,则( )

A.α<β B.sinα>sinβ C.tanα>tanβ D.cotα<cotβ

解:在第二象限内通过余弦函数线cosα>cosβ找出α、β的终边位置关系,再作出判断,得B。

高中物理题型及解答技巧

2018高考在即,很多同学反映,在平时的模拟考试中,总会出现试题做不完的情况。要知道,这可是高考的大忌!根源在于答题时间分配不科学,对一些答题注意事项把握不准。

下面和大家分享高考数学答题时间分配的原则及注意事项,大家可以作为参考,尽快学会在考场上合理利用时间!(本文适合大多数考生,可根据自己实际情况做稍微调整!)

高考数学答题时间、分配策略

一.充分利用考前5分钟

很多学生或家长不知道,按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是可以看题。发现很多考生拿到试卷之后,就从第一个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

二.进入考试先审题

考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。

三.节约时间的关键是一次做对

有些学生,好不容易遇到一个简单的题目,就一味地求快,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生看不上前边小题的分数,觉得后边大题的分数才“值钱”,这是严重的误区。希望在考试的时候,一定要培养一次就做对的习惯,不要指望通过最后的检查力挽狂澜。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在里面出不来,抬起头来的时候已经开始收卷了。

四.答题策略

巧解选择、填空题

解选择、填空题的基本原则是“小题不可大做”。

思路:第一,直接从题干出发考虑,探求结果;

第二,从题干和选择联合考虑;

第三,从选择出发探求满足题干的条件。

解填空题基本方法有:

直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。

细答解答题

1.规范答题很重要 。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。经常看到考生的卷面出现“会而不对”、“对而不全”的情况,造成考生自己的估分与实际得分相差很多。尤其是平面几何初步中的“跳步”书写,使考生丢分,所以考生要尽可能把过程写得详尽、准确。

2.分步列式。

尽量避免用综合或连等式。高考评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数。有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合式中有一处错误,就可能丢过程分。对于没有得出最后结果的试题,分步列式也可以得到相应的过程分,由此增加得分机会。

3.尽量保证证明过程及计算方法大众化。

解题时,使用通用符号,不易吃亏。有些考生为图简便使用一些特殊方法,可一旦结果有错,就会影响得分。

高考考场特别注意:

1.临进考场前,最好不要与同学扎堆,以免紧张情绪相互蔓延,你可以独自静处一会儿,在允许的情况下提前15-20分钟进入考场,看一看考场四周,熟悉一下环境,如果有认识的同学,可打招呼以放松心态。

2.坐在座位上,尽快进入角色;不再考虑成败、得失;文具摆好,眼镜摘下擦一擦,把这些动作权当考前稳定情绪的“心灵体操”,提醒自己做到保持静心、增强信心、做题专心、考试细心。

3.拿到试卷5分钟内一般不允许答题,可以对试卷作整体观察,看看这份试卷的名称是否正确、共多少页、页码顺序有无错误、每一页卷面是否清晰、完整,同时听好监考老师的要求(有时监考老师还会宣读更正错误试题)。

4.在考场上,有时明明知道试题的答案,由于紧张,一时想不起来,可事后不加思素,答案也会“油然而生”,这种现象在心理学上叫“舌尖现象”,遇到“舌尖现象”,最好是把回忆搁置起来,去解其它问题,等抑制过去后,需要的知识经验往往会自然出现。考试时,一时想不起某道试题的答案,可以暂停回忆,转移一意,先解决其它题目,过一定的时间后,所需要的答案也许就回忆起来了。

提分王模型解题法,最新版是哪一年

 高中物理题包括选择题、实验题、计算题等等题型,那这些题型考生要怎么回答?不清楚的小伙伴看过来,下面由我为你精心准备了“高中物理题型及解答技巧”仅供参考,持续关注本站将可以持续获取更多的资讯!

 高中物理题型及解答技巧

 选择题的答题技巧

 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题:

 (1)每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。

 (2)注意题干要求,让你选择的是不正确的、可能的还是一定的。

 (3)相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。

 (4)做选择题的常用方法:

 ①筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

 ②特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。

 ③极限分析法:将某些物理量取极限,从而得出结论的方法。

 ④直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。

 ⑤观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。

 ⑥熟练使用整体法与隔离法:分析多个对象时,一般要采取先整体后局部的方法。

 实验题的答题技巧

 (1)实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:①对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。②对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。③对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。

 (2)常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常规实验题时,这种题目考得比较细,要在细、实、全上下足功夫。

 计算题的答题技巧

 1、主干、要害知识重点处置

 清楚明确整个高中物理知识框架的同时,对主干知识(如牛顿定律、动量定理、动量守恒、能量守恒、闭合电路欧姆定律、带电粒子在电场、磁场中的运动特点、法拉第电磁感应定律、全反射现象等)公式来源、使用条件、罕见应用特别要反复熟练,弄懂弄通的基础上抓各种知识的综合应用、横向联系,形成纵横交错的网络。

 2、熟练、灵活掌握解题方法

 基本方法:审题技巧、分析思路、选择规律、建立方程、求解运算、验证讨论等

 技巧方法:指一些特殊方法如整体法、隔离法、模型法、等效法、极端假设法、图象法、极值法等

 习题训练中,应拿出一定时间反复强化解题时的一般方法,以形成良好的科学思维习惯,此基础上辅以特殊技巧,将事半功倍。

 此外,还应掌握三优先四分析的解题策略,即优先考虑整体法、优先考虑动能定理、优先考虑动量定理;分析物体的受力情况、分析物体的运动情况、分析力做功的情况、分析物体间能量转化情况。形成有机划、多角度、多侧面的解题方法网络。

 3、专题训练要有的放矢

 专题训练的主要目的通过解题方法指导,总结出同类问题的一般解题方法与其变形、变式。而且要特别注意四类综合题的系统复习:

 (1)、强调物理过程的题,要分清物理过程,弄清各阶段的特点、相互之间的关系、选择物理规律、选用解题方法、形成解题思路。

 (2)、模型问题,如平衡问题、追击问题、人船问题、碰撞问题、带电粒子在复合场中的加速、偏转问题等,只要将物理过程与原始模型合理联系起来,就容易解决。

 (3)、技巧性较高的题目,如临界问题、模糊问题,数理结合问题等,要注意隐含条件的挖掘、关键点”突破、过程之间“衔接点”确定、重要词的理解、物理情景的创设,逐步掌握较高的解题技巧。

 (4)、信息给予题。方法:1。阅读理解,发现信息2。提炼信息,发现规律3。运用规律,联想迁移4。类比推理,解答问题。

 拓展阅读:高考物理大题答题方法

 物理大题答题方法

 1、规范答题格式

 做物理大题时,要慢审题快答题,有些学生题目还没有看清楚就急着答题,既浪费了时间又失了分。大题中包括实验题和计算题,作答时一定要按照各科的具体特点和要求规范书写,对于一些文字叙述的答案,写完后要读一下,看是否符合逻辑关系,是否简洁明了。

 2、认真审题,不见句号不答题

 审题时一定要通读全题,审出题干中的关键词和隐含的信息,准确找出答题的突破口和限制性条件。见到熟悉的内容和题型,不要盲目乐观,因为在高考试题中有原题的可能性很小,往往是材料熟悉,但出题的角度、方式会有很大变化,一定要认真分析,不要受原题的干扰,以避免失分;见到新题、难题,不要过分紧张,因为这些题对所有考生来说都新、都难,要相信材料再新,所考查的知识肯定是我们学过的,不要被新信息所蒙蔽。

 高考物理大题解题技巧

 1、挖掘隐含条件

 高考物理计算题之所以较难,不仅是因为物理过程复杂、多变,还由于潜在条件隐蔽、难寻,往往使考生们产生条件不足之感而陷入困境,这也正考查了考生思维的深刻程度.在审题过程中,必须把隐含条件充分挖掘出来,这常常是解题的关键.有些隐含条件隐蔽得并不深,平时又经常见到,挖掘起来很容易,但还有一些隐含条件隐藏较深或不常见到,挖掘起来就有一定的难度了。

 2、重视对基本过程的分析

 在高中物理中,力学部分涉及的运动过程有匀速直线运动、匀变速直线运动、平抛运动、圆周运动、简谐运动等,除了这些运动过程外,还有两类重要的过程:一类是碰撞过程,另一类是先变加速运动最终匀速运动的过程(如汽车以恒定功率启动问题)。

 热学中的变化过程主要有等温变化、等压变化、等容变化、绝热变化等。电学中的变化过程主要有电容器的充电和放电、电磁振荡、电磁感应中的导体棒做先变加速后匀速的运动等,而画出这些物理过程的示意图或画出关键情境的受力分析示意图是解析计算题的常规手段。

 3、善于从复杂的情境中快速地提取有效信息

 现在的物理试题中介绍性、描述性的语句相当多,题目的信息量很大,解题时应具备敏锐的眼光和灵活的思维,善于从复杂的情境中快速地提取有效信息,准确理解题意。

 4、要谨慎细致,谨防定势思维

 经常遇到一些物理题故意多给出已知条件,或表述物理情境时精心设置一些陷阱,安排一些似是而非的判断,以此形成干扰因素,来考查学生明辨是非的能力.这些因素的迷惑程度愈大,同学们愈容易在解题过程中犯错误。

 在审题过程中,只有有效地排除这些干扰因素,才能迅速而正确地得出答案.有些题目的物理过程含而不露,需结合已知条件,应用相关概念和规律进行具体分析。分析前不要急于动笔列方程,以免用假的过程模型代替了实际的物理过程,防止定势思维的负迁移。

高中数学大题解题方法与技巧

2023年。根据查询列举网显示,截止2023年8月8日,2023年是最新版的教材,王燕谋老师把《提分王高效学习法》教给学生,并给学生发放模型卡,方便记忆。王燕谋,特级教师。北京市十一学校原数学学科主任,负责海淀区各校高三毕业班数学复习工作,多次参加北京市模拟考试,会考,高考的命题工作。是著名的海淀一模二模的命题人员。北京一帮一,助教协会数学科主任委员。

高考物理大题解题技巧

 高中数学大题解题方法与技巧同学认真思考过吗,没有的话,快来我这里看看。下面是由我为大家整理的“高中数学大题解题方法与技巧”,仅供参考,欢迎大家阅读。

高中数学大题解题方法与技巧

  一、三角函数题

 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

  二、数列题

 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

 3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

  三、立体几何题

 1.证明线面位置关系,一般不需要去建系,更简单;

 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

  四、概率问题

 1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

 2.搞清是什么概率模型,套用哪个公式;

 3.记准均值、方差、标准差公式;

 4.求概率时,正难则反(根据p1+p2+...+pn=1);

 5.注意计数时利用列举、树图等基本方法;

 6.注意放回抽样,不放回抽样;

 7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

 8.注意条件概率公式;

 9.注意平均分组、不完全平均分组问题。

  五、圆锥曲线问题

 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

 3.战术上整体思路要保7分,争9分,想12分。

六、导数、极值、最值、不等式恒成立(或逆用求参)问题

 1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

 2.注意最后一问有应用前面结论的意识;

 3.注意分论讨论的思想;

 4.不等式问题有构造函数的意识;

 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

 6.整体思路上保6分,争10分,想14分。

拓展阅读:高中物理大题答题技巧和规范

  高中物理大题答题技巧

 审题要仔细,关键字眼不可疏忽

 审题时一定要仔细,尤其要注意一些重要的关键字眼,不要以为是"容易题""陈题"就一眼带过,要注意"陈题"中可能有"新意"。也不要一眼看上去认为是"新题、难题"就畏难而放弃,要知道"难题"也只难在一点,"新题"只新在一处。由于疏忽看错题或畏难轻易放弃都会造成很大的遗憾。

 物理过程的分析要注意细节,要善于找出两个相关过程的连接点(临界点)

 对于一个复杂的物理问题,首先要根据题目所描述的情景建立正确的物理模型,然后对物理过程进行分析,对于多过程的物理问题,考生一定要注意分析物理过程的细节,弄清各个过程的运动特点及相关联系,找出相关过程之间的物理量之间的关系,做到了这一点,也就找到了解题的突破口,难题也就变得容易了。

  高中物理大题答题规范

 从这几年的评卷来看,很多学生由于答题不规范,没有相应的应考技巧,导致丢失了很多应得之分,有些学生失分情况相当严重,一科达20分以上,其中不乏一些较好的学生。为避免这种情况,特别注意以下情形:

  一、分步列式,不要用综合或连等式

 高考评分标准是分步给分,写出每一个过程对应的方程式,只要说明、表达正确都可以得相应的分数;有些学生喜欢写出一个综合式,或是连等式,而评分原则是"综合式找错",即只要发现综合式中有一处错,全部过程都不能得分。所以对于不会解的题,分步列式也可以得到相应的过程分,增加得分机会。

  二、对复杂的数值计算题,最后结果要先解出符号表达,再代入数值进行计算

 最后结果的表达式占有一定的分值,结果表达式正确计算过程出错,只会丢掉很少的分。若没有结果表达式又出现计算错误,失分机会很大。

  三、简洁文字说明与方程式相结合

 有的考生解题是从头到尾只有方程,没有必要的文字说明,方程中使用的符号表示什么不提出;有的考生则相反,文字表达太长,像写作文,关键方程没有列出。既耽误时间,又占据了答卷的空间,以上两种情形都会导致丢分。所以在答卷时提倡简洁文字表达,关键处的说明配合图示和物理方程式相结合。

四、尽量用常规方法,使用通用符号

 有些考生解题时首先不从常规方法入手,而是为图简便而用一些特殊奇怪的方法,虽然是正确的,但阅卷老师短时间不易看清。同样,使用一些不是习惯的符号来表达一些特点的物理量,阅卷老师也可能会看错。这是因为阅卷现场老师的工作量很重,每天平均阅卷2500多份,平均看一道题的时间不过几秒钟。

学好物理不仅要注重平时的积累学习,还要注意保持好心态及答题时的技巧。下面是我为大家整理的关于高考物理大题解题技巧,希望对您有所帮助。欢迎大家阅读参考学习!

更多物理相关内容推荐↓↓↓

物理磁场的知识点

初中物理知识点总结归纳

物理学上最伟大的十个公式

物理学上10大科学定律及理论

理综物理学科大题的命题特点

1.理论题综合性强,能力要求高

物理部分一般是3道理论大题,其中两道力学题一道电学题,也有一道力学题两道电学题的情况,不过这种情况较少。其中,力学题常常以物体的碰撞或连接体为背景,涉及匀变速直线运动规律、牛顿运动定律、平抛运动与圆周运动规律、动能定理、动量守恒定律、机械能守恒定律和能量守恒定律等知识的综合;电学题则以带电粒子在匀强电场、匀强磁场中的运动最为常见,有时还出现有关电磁感应的综合性大题,涉及电场、磁场、电磁感应定律与力学规律的综合。

试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、物理 方法 的技巧性和一题多解的灵活性等特点,能力要求较高。

2.实验题实践性强,考查范围广

每年两道实验题,均为一道力学实验题、一道电学实验题。其中,仪器的使用是实验考查的基础内容,长度和电学量的测量及相关仪器的使用是出题最频繁的知识点。试题考查范围广泛,已跳出了《考试大纲》知识内容表中所列实验的范围,出现了迁移类实验与创新型实验。它们基本上不是课本上现成的实验,但其原理、方法以及所涉及的知识均是学生所学过的。

理综物理学科大题的答题策略

1.对于多体问题,要正确选取研究对象,善于寻找相互联系

选取研究对象和寻找相互联系是求解多体问题的两个关键。选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。

通常,符合守恒定律的系统或各部分运动状态相同的系统,宜采用整体法;在需讨论系统各部分间的相互作用时,宜采用隔离法;对于各部分运动状态不同的系统,应慎用整体法,有时不能用整体法。至于多个物体间的相互联系,通常可从它们之间的相互作用、运动的时间、位移、速度、加速度等方面去寻找。

2.对于多过程问题,要仔细观察过程特征,妥善运用物理规律

观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律逐个进行研究。至于过程之间的联系,则可从物体运动的速度、位移、时间等方面去寻找。

3.对于含有隐含条件的问题,要注重审题,深究细琢,努力挖掘隐含条件

注重审题,深究细琢,综观全局重点推敲,挖掘并应用隐含条件,梳理解题思路或建立辅助方程,是求解的关键。通常,隐含条件可通过观察物理现象、认识物理模型和分析物理过程,甚至从试题的字里行间或图像中去挖掘。

4.对于存在多种情况的问题,要认真分析制约条件,周密探讨多种情况

解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。

5.对于物理技巧性较强的问题,要耐心细致寻找规律,熟练运用物理方法

耐心寻找规律、选取相应的物理方法是关键。求解物理问题,通常采用的物理方法有:方程法、比例法、数列法、不等式法、函数极值法、微元分析法、图像法和几何法等,在众多物理方法的运用上必须打下扎实的基础。

6.对于有多种解法的问题,要开拓思路避繁就简,合理选取最优解法

避繁就简、选取最优解法是顺利解题、争取高分的关键,特别是在受考试时间限制的情况下更应如此。这就要求我们具有敏捷的思维能力和熟练的解题技巧,在短时间内进行斟酌、比较、选择并作出决断。当然,作为平时的解题训练,尽可能地多采用几种解法,对于开拓我们的解题思路是非常有益的。

7.对于《考试大纲》中所列的实验,要把握原理、讲究方法

对于《考试大纲》所列实验,解答的关键是要在掌握实验原理的基础上,熟悉操作步骤、数据处理和误差分析等。要熟记课本对所考实验的相关叙述,结合自己动手实验的全过程,解决此类实验考题。

8.对于创新型实验,要汲取信息、联想类比,实现实验的迁移创新

用学过的实验方法、用过的实验仪器进行新的实验设计,是处理此类问题的关键。要仔细阅读题目,理解题意,从题给的文字、图表、图像中捕获有效信息,从中找出规律,通过联想、等效、类比等思维方法建立与新情境对应的物理模型,并在旧知识与物理模型之间架设桥梁,将旧知识运用到新情境中去,然后进行推理、计算,实现实验的迁移与创新。

高中物理选择题答题技巧

选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题:

(1)每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。

(2)注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。

(3)相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。

(4)做选择题的常用方法:

①筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

②特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。

③极限分析法:将某些物理量取极限,从而得出结论的方法。

④直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。

⑤观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。

⑥熟练使用整体法与隔离法:分析多个对象时,一般要采取先整体后局部的方法。

高考物理大题解题技巧相关 文章 :

★ 高考物理大题解题技巧小结

★ 高三物理大题解题技巧

★ 高考物理大题解答技巧

★ 理综物理大题答题技巧

★ 高考物理解答题解题技巧有哪些

★ 理综物理大题答题技巧方法

★ 高考物理大题解答技巧及提分技巧

★ 高考物理做题技巧方法

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

文章标签: # 方法 # 问题 # 解题