您现在的位置是: 首页 > 教育科技 教育科技

2013年高考名次,2013高考排序题

tamoadmin 2024-05-31 人已围观

简介1.急!!!高考排列组合多面手问题2.排列组合解题方法3.英语里多个形容词作定语的排序问题类型一、特殊元素和特殊位置优先策略 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素;若以位置分析为主,需先满足特殊位置的要求,再处理其它位置;若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。 这种首先确定排列还是组合的问题,对

1.急!!!高考排列组合多面手问题

2.排列组合解题方法

3.英语里多个形容词作定语的排序问题

2013年高考名次,2013高考排序题

类型一、特殊元素和特殊位置优先策略

位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素;若以位置分析为主,需先满足特殊位置的要求,再处理其它位置;若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。

这种首先确定排列还是组合的问题,对于首位和末位无须考虑顺序,但是首位末位有优先需求,所以先要排首位和末位,末位必须是奇数,也就是从1,3,5这个里边去挑选一个即可,那首位还不能排0,在排除一个奇数,只剩下4个数可以选择,所以剩下的三位我们直接全排列就可以。

类型二、相邻/相间元素捆绑策略

要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题,即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列。审题时一定要注意关键字眼。

类型三、不相邻问题插空策略

先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端。

所以这两个方法的关键字都是相邻,以元素相邻为附加条件的应把相邻元素视为一个整体,即采用“捆绑法”;以某些元素不能相邻为附加条件的,可采用“插空法”。“插空”有同时“插空”和有逐一“插空”,并要注意条件的限定。

类型四、定序问题倍缩空位插入策略]

顺序固定问题用“除法”,对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。当然还可以用倍缩法,还可转化为占位插空模型处理。

类型五、重排问题求幂策略

分房问题又名:住店法,重排问题求幂策略,解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解。允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为mn种。

例:把6名实习生分配到7个车间实习,共有多少种不同的分法

类型六、环排问题

类型七、多排问题

一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究。

类型八、小集团问题

小集团排列问题中,先整体后局部,再结合其他策略进行处理。

类型九、元素相同问题隔板策略

类型十、正难则反总体淘汰问题

对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解。有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰。对于含有否定词语的问题,还可以从总体中把不符合要求的减去,此时应注意既不能多减又不能少减。

类型十一、平均分组除法问题

类型十二、实际操作枚举问题

类型十三、具体问题具体分析

解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题。

总结

排列组合虽然模型多变,但是其实老师最喜欢的就是具体问题具体分析,根据最基础的加法原理和乘法原理,根据排列组合的问题去求解,去化简。大家在高考剩余的20天里要多去思考题目的突破点,不要只看结论,只是看懂了。大家真正应该思考的是我如果没有答案下一次遇见这个类型的题目应该如何进行下手,如何进行求解做题,如何保证得分,希望总结的这几个技巧对大家是有帮助的,排列组合其实不难,所以大家要加油!

急!!!高考排列组合多面手问题

排列组合问题主要是把过程理顺清楚。这道题可以这么解:

首先要理解这是一个排列问题,先把3位女生分成两人和一人,一共有6中情况(注意两人中有顺序),然后把3个男生排列好有3!=6种排列方法,再把两组女生插到男生组成的4个空格中去有4x3=12种,而这6x12=72种排列中:在两头的种类为:两组女生插到两个男生(乙和丙)中有2x3x2x2=24种排列方法(第一个2是两男生排列好,第二个3和第三个2是两组女生插到两个男生中的3个空格中,最后一个2表示甲可以在头或尾)所以一共有排列种数:6x(72-24)=288种。

说点题外话,其实要学好排列与组合不是两三句话的事,要多做不同类型的题,然后善于总结,最重要的一点是思路要清晰,不要漏也不能重,祝你高考顺利。有问题咱们可以再交流。

排列组合解题方法

这样做不对

可能有重复现象

比如C(7,4)C(4,4)中C(7.4)是从5+2人中选出4人排版而选的情况中有只从那5人选4人进行排版的情况

与C(5,4)

C(6,4)都有重复

正解应该为

先不加那什么都会的两人是C(5,4)C(4,4)

然后假设从那两人中选一人

开始讨论

假如那一人排版

和那一人印刷则

2C(5,3)C(4,4)+2C(5,4)C(4,3)

假设那两人都参加则

C(5,2)C(4,4)+C(5,4)C(4,2)+2C(5,3)C(4,3)

然后加起来

自己算吧

我们的pq反着

英语里多个形容词作定语的排序问题

这里应该是均分和不均分问题,类似于把书分成几堆。c41*c33是有序不均匀分组问题,若1和2和限制相同就需*a22,此处限制条件不同

因为如果编号2是c41就不满足“每个盒子里的球的个数不小于该盒子的编号”,故不能将情况颠倒。c42*c22*a22/a22和答案的c42*c22就是一样的了,这是有序均匀分组问题,并且这种情况是每个盒子均是2个,此时你乘a22就是有道理的了,但要注意这是均匀分组故要除a22。

给你个建议做排列组合题多列举一下别硬搬公式,山东高考这几年题越来越活,我每次就是把大情况分解为小情况在逐个计算。祝你高考顺利。

仙术xs鲜花

a newly-built red brick building

an expensive blue cotton dress

很难解释,可以理解一下,与所修饰的名词关系近的放在后面,关系远的放在前面.

有人归纳为:

描述,尺寸,形状,颜色,种类

文章标签: # 问题 # 元素 # 排列