您现在的位置是: 首页 > 教育科技 教育科技
2014山东卷数学 理科数学_山东2014高考数学题
tamoadmin 2024-05-23 人已围观
简介要用到的公式对了会有相应的得分,圆锥曲线题一般是有两小问的,如果是满分十五分的题,第一问答对会有五到七分,第二小问答对会得十到八分。每个用到的关键公式会给一分到两分,结果答对会有一到两分,证明通顺合理,无错误会给满分。圆锥曲线问题一直是历年高考的重难点,建议熟记椭圆,抛物线,双曲线的方程式,多做相应的练习题,仔细查看研究标准的解题步骤,就算不会,每一步该写什么也有个大概的概念,题目不要空白,至少会
要用到的公式对了会有相应的得分,圆锥曲线题一般是有两小问的,如果是满分十五分的题,第一问答对会有五到七分,第二小问答对会得十到八分。每个用到的关键公式会给一分到两分,结果答对会有一到两分,证明通顺合理,无错误会给满分。
圆锥曲线问题一直是历年高考的重难点,建议熟记椭圆,抛物线,双曲线的方程式,多做相应的练习题,仔细查看研究标准的解题步骤,就算不会,每一步该写什么也有个大概的概念,题目不要空白,至少会的公式先写上去。
扩展资料:
2000多年前,古希腊数学家最先开始研究圆锥曲线 ,并获得了大量的成果。古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线。
用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;用平行于圆锥的轴的平面截取,可得到双曲线的一支。
直线参数方程:x=x+tcosθ y=y+tsinθ (t为参数)
圆参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )
椭圆参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )
双曲线参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )
抛物线参数方程:x=2pt^2 y=2pt (t为参数)
百度百科-圆锥曲线
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的的四个选项中,只有一个项是符合题目要求的。
(1)设集合 , ,则
A. B. C. D.
解析: , ,答案应选A。
(2)复数 为虚数单位)在复平面内对应的点所在的象限为
A.第一象限 B.第二象限 C.第三象限 D.第四象限
解析: 对应的点为 在第四象限,答案应选D.
(3)若点 在函数 的图象上,则 的值为
A. B. C. D.
解析: , , ,答案应选D.
(4)不等式 的解集是
A. B. C. D.
解析:当 时,原不等式可化为 ,解得 ;当 时,原不等式可化为 ,不成立;当 时,原不等式可化为 ,解得 .综上可知 ,或 ,答案应选D。
另解1:可以作出函数 的图象,令 可得 或 ,观察图像可得 ,或 可使 成立,答案应选D。
另解2:利用绝对值的几何意义, 表示实数轴上的点 到点 与 的距离之和,要使点 到点 与 的距离之和等于10,只需 或 ,于是当 ,或 可使 成立,答案应选D。
(5)对于函数 , ,“ 的图象关于 轴对称”是“ 是奇函数”的
A充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件
解析:若 是奇函数,则 的图象关于 轴对称;反之不成立,比如偶函数 ,满足 的图象关于 轴对称,但不一定是奇函数,答案应选B。
(6)若函数 在区间 上单调递增,在区间 上单调递减,则
A. B. C. D.
解析:函数 在区间 上单调递增,在区间 上单调递减,
则 ,即 ,答案应选C。
另解1:令 得函数 在 为增函数,同理可得函数 在 为减函数,则当 时符合题意,即 ,答案应选C。
另解2:由题意可知当 时,函数 取得极大值,则 ,即 ,即 ,结合选择项即可得答案应选C。
另解3:由题意可知当 时,函数 取得最大值,
则 , ,结合选择项即可得答案应选C。
(7)某产品的广告费用 与销售额 的统计数据如下表:
广告费用 (万元)
4 2 3 5
销售额 (万元)
49 26 39 54
根据上表可得回归方程 中的 为9.4,据此模型预报广告费用为6万元是销售额为
A.6 .6万元 B. 65.5万元 C. 67.7万元 D. 72.0万元
解析:由题意可知 ,则 ,答案应选B。
(8)已知双曲线 的两条渐近线均和圆 相切,且双曲线的右焦点为圆 的圆心,则该双曲线的方程为
A. B. C. D.
解析:圆 , 而 ,则 ,答案应选A。
(9)函数 的图象大致是
解析:函数 为奇函数,且 ,令 得 ,由于函数 为周期函数,而当 时, ,当 时, ,则答案应选C。
(10)已知 是 上最小正周期为2的周期函数,且当 时, ,则函数 的图象在区间 上与 轴的交点的个数为
A.6 B.7 C.8 D.9
解析:当 时 ,则 ,而 是 上最小正周期为2的周期函数,则 , ,答案应选B。
(11)右图是长和宽分别相等的两个矩形。给定三个命题:
①存在三棱柱,其正(主)视图、俯视图如右图;
②存在四棱柱,其正(主)视图、俯视图如右图;
③存在圆柱,其正(主)视图、俯视图如右图。
其中真,命题的个数是
A.3 B.2 C.1 D.0
解析:①②③均是正确的,只需①底面是等腰直角三角形的直四棱柱,
让其直角三角形直角边对应的一个侧面平卧;②直四棱柱的两个侧面
是正方形或一正四棱柱平躺;③圆柱平躺即可使得三个命题为真,
答案选A。
(12)设 是平面直角坐标系中两两不同的四点,若 ,
,且 ,则称 调和分割 ,已知平面上的点 调和分割点 ,则下面说法正确的是
A. C可能是线段AB的中点 B. D可能是线段AB的中点
C. C,D可能同时在线段AB上 D. C,D不可能同时在线段AB的延长线上
解析:根据题意可知 ,若C或D是线段AB的中点,则 ,或 ,矛盾;
若C,D可能同时在线段AB上,则 则 矛盾,若C,D同时在线段AB的延长线上,则 , ,故C,D不可能同时在线段AB的延长线上,答案选D。