您现在的位置是: 首页 > 教育改革 教育改革
全国卷考双曲线大题吗,文科高考双曲线题
tamoadmin 2024-05-19 人已围观
简介1.高考模拟题 数学双曲线问题2012年普通高等学校招生全国统一考试福建卷(数学文)word版数学试题(文史类)第I卷(选择题?共60分)一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数(2+i)2等于A.3+4i B.5+4i C.3+2i D.5+2i2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是A.
1.高考模拟题 数学双曲线问题
2012年普通高等学校招生全国统一考试福建卷(数学文)word版
数学试题(文史类)
第I卷(选择题?共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(2+i)2等于
A.3+4i B.5+4i C.3+2i D.5+2i
2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}
3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=- B.x-1 C.x=5 D.x=0
4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世
A?球? B? 三棱锥? C? 正方体?D?圆柱?
5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于
A ? B C ?D ?
6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?
A?-3? B? -10? C? 0 D? -2?
7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于
A.? B?.?C.? D.1
8.函数f(x)=sin(x-?)的图像的一条对称轴是
A.x= B.x= C.x=- D.x=-?
9.设?,则f(g(π))的值为
A?1 ? B? 0 ?C? -1 ?D? π
10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为
A.-1? B.1? C. D.2
11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于
A.1006 B.2012 C.503 D.0
12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正确结论的序号是
A.①③ B.①④ C.②③ D.②④
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。
13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。
14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。
15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。
16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。
18.(本题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
19.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1) 求三棱锥A-MCC1的体积;
(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。
20.?(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°
Ⅰ?试从上述五个式子中选择一个,求出这个常数?
Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
21.(本小题满分12分)
如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1) 求抛物线E的方程;
(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。
22.(本小题满分14分)
已知函数?且在?上的最大值为?,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
2012年普通高等学校招生全国统一考试福建卷(数学文)word版
数学试题(文史类)
第I卷(选择题?共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(2+i)2等于
A.3+4i B.5+4i C.3+2i D.5+2i
2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}
3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=- B.x-1 C.x=5 D.x=0
4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世
A?球? B? 三棱锥? C? 正方体?D?圆柱?
5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于
A ? B C ?D ?
6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?
A?-3? B? -10? C? 0 D? -2?
7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于
A.? B?.?C.? D.1
8.函数f(x)=sin(x-?)的图像的一条对称轴是
A.x= B.x= C.x=- D.x=-?
9.设?,则f(g(π))的值为
A?1 ? B? 0 ?C? -1 ?D? π
10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为
A.-1? B.1? C. D.2
11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于
A.1006 B.2012 C.503 D.0
12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正确结论的序号是
A.①③ B.①④ C.②③ D.②④
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。
13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。
14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。
15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。
16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。
18.(本题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
19.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1) 求三棱锥A-MCC1的体积;
(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。
20.?(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°
Ⅰ?试从上述五个式子中选择一个,求出这个常数?
Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
21.(本小题满分12分)
如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1) 求抛物线E的方程;
(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。
22.(本小题满分14分)
已知函数?且在?上的最大值为?,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
高考模拟题 数学双曲线问题
2009年普通高等学校招生全国统一考试
文科数学(必修+选修Ⅰ)
本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.
3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
参考公式:
如果事件 互斥,那么 球的表面积公式
如果事件 相互独立,那么 其中 表示球的半径
球的体积公式
如果事件 在一次试验中发生的概率是 ,那么
次独立重复试验中恰好发生 次的概率 其中 表示球的半径
一、选择题
(1) 的值为
(A) (B) (C) (D)
解析本小题考查诱导公式、特殊角的三角函数值,基础题。
解: ,故选择A。
(2)设集合A={4,5,7,9},B={3,4,7,8,9},全集 ,则集合 中的元素共有
(A) 3个 (B) 4个 (C)5个 (D)6个
解析本小题考查集合的运算,基础题。(同理1)
解: , 故选A。也可用摩根定律:
(3)不等式 的解集为
(A) (B)
(C) (D)
解析本小题考查解含有绝对值的不等式,基础题。
解: ,
故选择D。
(4)已知tan =4,cot = ,则tan(a+ )=
(A) (B) (C) (D)
解析本小题考查同角三角函数间的关系、正切的和角公式,基础题。
解:由题 , ,故选择B。
(5)设双曲线 的渐近线与抛物线 相切,则该双曲线的离心率等于
(A) (B)2 (C) (D)
解析本小题考查双曲线的渐近线方程、直线与圆锥曲线的位置关系、双曲线的离心率,基础题。
解:由题双曲线 的一条渐近线方程为 ,代入抛物线方程整理得 ,因渐近线与抛物线相切,所以 ,即 ,故选择C。
(6)已知函数 的反函数为 ,则
(A)0 (B)1 (C)2 (D)4
解析本小题考查反函数,基础题。
解:由题令 得 ,即 ,又 ,所以 ,故选择C。
(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有
(A)150种 (B)180种 (C)300种 (D)345种
解析本小题考查分类计算原理、分步计数原理、组合等问题,基础题。
解:由题共有 ,故选择D。
(8)设非零向量 、 、 满足 ,则
(A)150° (B)120° (C)60° (D)30°
解析本小题考查向量的几何运算、考查数形结合的思想,基础题。
解:由向量加法的平行四边形法则,知 、 可构成菱形的两条相邻边,且 、 为起点处的对角线长等于菱形的边长,故选择B。
(9)已知三棱柱 的侧棱与底面边长都相等, 在底面 上的射影为 的中点,则异面直线 与 所成的角的余弦值为
(A) (B) (C) (D)
解析本小题考查棱柱的性质、异面直线所成的角,基础题。(同理7)
解:设 的中点为D,连结 D,AD,易知 即为异面直线 与 所成的角,由三角余弦定理,易知 .故选D
(10) 如果函数 的图像关于点 中心对称,那么 的最小值为
(A) (B) (C) (D)
解析本小题考查三角函数的图象性质,基础题。
解: 函数 的图像关于点 中心对称
由此易得 .故选A
(11)已知二面角 为600 ,动点P、Q分别在面 内,P到 的距离为 ,Q到 的距离为 ,则P、Q两点之间距离的最小值为
解析本小题考查二面角、空间里的距离、最值问题,综合题。(同理10)
解:如图分别作
,连
,
又
当且仅当 ,即 重合时取最小值。故答案选C。
(12)已知椭圆 的右焦点为F,右准线 ,点 ,线段AF交C于点B。若 ,则 =
(A) (B) 2 (C) (D) 3
解析本小题考查椭圆的准线、向量的运用、椭圆的定义,基础题。
解:过点B作 于M,并设右准线 与x轴的交点为N,易知FN=1.由题意 ,故 .又由椭圆的第二定义,得 .故选A
2009年普通高等学校招生全国统一考试
文科数学(必修 选修Ⅰ)
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.
2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.
3.本卷共10小题,共90分.
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
(注意:在试题卷上作答无效)
(13) 的展开式中, 的系数与 的系数之和等于_____________.
解析本小题考查二项展开式通项、基础题。(同理13)
解: 因 所以有
(14)设等差数列 的前 项和为 。若 ,则 _______________.
解析本小题考查等差数列的性质、前 项和,基础题。(同理14)
解: 是等差数列,由 ,得
。
(15)已知 为球 的半径,过 的中点 且垂直于 的平面截球面得到圆 ,若圆 的面积为 ,则球 的表面积等于__________________.
解析本小题考查球的截面圆性质、球的表面积,基础题。
解:设球半径为 ,圆M的半径为 ,则 ,即 由题得 ,所以 。
(16)若直线 被两平行线 所截得的线段的长为 ,则 的倾斜角可以是
① ② ③ ④ ⑤
其中正确答案的序号是 .(写出所有正确答案的序号)
解析本小题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想。
解:两平行线间的距离为 ,由图知直线 与 的夹角为 , 的倾斜角为 ,所以直线 的倾斜角等于 或 。故填写①或⑤
三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效)
设等差数列{ }的前 项和为 ,公比是正数的等比数列{ }的前 项和为 ,已知 的通项公式.
解析本小题考查等差数列与等比数列的通项公式、前 项和,基础题。
解:设 的公差为 ,数列 的公比为 ,
由 得 ①
得 ②
由①②及 解得
故所求的通项公式为 。
(18)(本小题满分12分)(注意:在试用题卷上作答无效)
在 中,内角 的对边长分别为 .已知 ,且 ,求 .
解析本小题考查正弦定理、余弦定理。
解:由余弦定理得 ,
又 ,
,
即 ①
由正弦定理得
又由已知得
,
所以 ②
故由①②解得
(19)(本小题满分12分)(注决:在试题卷上作答无效)
如图,四棱锥 中,底面 为矩形, 底面 , , ,点 在侧棱 上,
(Ⅰ)证明: 是侧棱 的中点;
(Ⅱ)求二面角 的大小。(同理18)
解法一:
(I)
作 ‖ 交 于点E,则 ‖ , 平面SAD
连接AE,则四边形ABME为直角梯形
作 ,垂足为F,则AFME为矩形
设 ,则 ,
由
解得
即 ,从而
所以 为侧棱 的中点
(Ⅱ) ,又 ,所以 为等边三角形,
又由(Ⅰ)知M为SC中点
,故
取AM中点G,连结BG,取SA中点H,连结GH,则 ,由此知 为二面角 的平面角
连接 ,在 中,
所以
二面角 的大小为
解法二:
以D为坐标原点,射线DA为x轴正半轴,建立如图所示的直角坐标系D-xyz
设 ,则
(Ⅰ)设 ,则
又
故
即
解得 ,即
所以M为侧棱SC的中点
(II)
由 ,得AM的中点
又
所以
因此 等于二面角 的平面角
所以二面角 的大小为
(20)(本小题满分12分)(注意:在试题卷上作答无效)
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率。
解析本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,综合题。
解:记“第 局甲获胜”为事件 ,“第 局乙获胜”为事件 。
(Ⅰ)设“再赛2局结束这次比赛”为事件A,则
,由于各局比赛结果相互独立,故
(Ⅱ)记“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而
,由于各局比赛结果相互独立,故
(21)(本小题满分12分)(注意:在试题卷上作答无效)
已知函数 .
(Ⅰ)讨论 的单调性;
(Ⅱ)设点P在曲线 上,若该曲线在点P处的切线 通过坐标原点,求 的方程
解析本小题考查导数的应用、函数的单调性,综合题。
解:(Ⅰ)
令 得 或 ;
令 得 或
因此, 在区间 和 为增函数;在区间 和 为减函数。
(Ⅱ)设点 ,由 过原点知, 的方程为 ,
因此 ,
即 ,
整理得 ,
解得 或
因此切线 的方程为 或
(22)(本小题满分12分)(注意:在试题卷上作答无效)
如图,已知抛物线 与圆 相交于A、B、C、D四个点。
(Ⅰ)求 的取值范围
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。
解:(Ⅰ)将抛物线 代入圆 的方程,消去 ,
整理得 ①
与 有四个交点的充要条件是:方程①有两个不相等的正根
由此得
解得
又
所以 的取值范围是
(II) 设四个交点的坐标分别为 、 、 、 。
则由(I)根据韦达定理有 ,
则
令 ,则 下面求 的最大值。
方法1:由三次均值有:
当且仅当 ,即 时取最大值。经检验此时 满足题意。
方法2:设四个交点的坐标分别为 、 、 、
则直线AC、BD的方程分别为
解得点P的坐标为 。
设 ,由 及(Ⅰ)得
由于四边形ABCD为等腰梯形,因而其面积
则
将 , 代入上式,并令 ,得
,
∴ ,
令 得 ,或 (舍去)
当 时, ;当 时 ;当 时,
故当且仅当 时, 有最大值,即四边形ABCD的面积最大,故所求的点P的坐标为
设P(x,y)
F1=(-c,0)
|PF1|=|PO|
x^2+y^2=(x+c)^2+y^2
x=-c/2
x≤-a,-c/2≤-a, c/a≥2
e=c/a≥2
所以离心率的取值范围是(2,+ ∞)