您现在的位置是: 首页 > 教育改革 教育改革

数学高考立体几何公式_数学高考立体几何

tamoadmin 2024-06-07 人已围观

简介1.文科数学高考中立体几何占多少分?2.高中数学立体几何3.高中数学必修2立体几何重要吗 高考考得多吗4.高考数学立体几何得分标准_数值错误的扣分高考数学立体几何大题中,有两类问题是最重要的。一是平行和垂直的证明;二是求角。求角问题又分为三类:1)求两异面直线所成的角。2)求线面角。3)求二面角。方法:一是采用立体几何常规方法,按照线线角、线面角、二面角的定义把线线角、线面角、二面角的平面角找到,

1.文科数学高考中立体几何占多少分?

2.高中数学立体几何

3.高中数学必修2立体几何重要吗 高考考得多吗

4.高考数学立体几何得分标准_数值错误的扣分

数学高考立体几何公式_数学高考立体几何

高考数学立体几何大题中,有两类问题是最重要的。一是平行和垂直的证明;二是求角。求角问题又分为三类:1)求两异面直线所成的角。2)求线面角。3)求二面角。

方法:一是采用立体几何常规方法,按照线线角、线面角、二面角的定义把线线角、线面角、二面角的平面角找到,然后放到一个三角形中去计算;二是建立坐标系采用空间向量法去求角。

1、求两异面直线所成的角:角的范围是0度到90度,不包括0度,包括90度。方法是一条直线不动,另外一条直线平行移动到跟前一条直线相交,它们所成的锐角或直角为两异面直线所成的角,然后放入它的所在的三角形中去解三角形求出角的大小。当然也可以在几何体中另取一点,将两条直线都平行移动到相交,再去求角的大小。

遇到正方体对角线时,通常采用补形法在正方体旁补一个一模一样大小的正方体,然后再去平行移动直线。

易错点:若题设条件告诉你两异面直线所成的角,反回到图形中应有两种情况,这个角或它的补角。

2、求线面角:角的范围是0度到90度,不包括0度,包括90度。

方法有定义法、等体积法、补形法等。

等体积法模型:当过一个点作一个平面的垂线时,若垂足不好确定,则通过等体积法直接确定垂线段即高线的长度,然后将高线长放在一直角三角形中求角。

文科数学高考中立体几何占多少分?

如果涉及到长方体、正方体等有现成的三面两两垂直的,就直接以后面、左侧面和底面为准来建立空间直角坐标系,如果不是正的,那就找出和他们两两垂直的面,一般来说,考到三角形的中位线的多一些,就找出三角形的高和其他的线来构成两两垂直的立体坐标系!

高中数学立体几何

一般是一道选择5分,一道填空5分,一道大题12分共22分。但根据历年高考命题专家思路不同可能稍有差异,如09年全国卷一选择题第9(三棱柱问题),第11道题(二面角问题),填空第15道题(球类问题)以及大题第18道(四棱锥问题)合计27分。至于10年试题所占比重等今年的《考试大纲》出来之后就知道了,不过一般变动不大。

立体几何中占分值最大的要数“求空间角与空间距离”这一块,但凡立体几何大都能用向量法解,这对文科生来说也算是学习立体几何的一个捷径吧,尤其是在高三冲刺阶段只要掌握住用向量法解立体几何,几乎都可以做出啦。另外高中数学中真正的难点是在解析几何一章,高考占分较重且无论选择填空还是大题都多以压轴题出现,文科生得数学者的天下,所以希望你能注意这一点!!!最后预祝你能取得好成绩,考上理想的大学。

高中数学必修2立体几何重要吗 高考考得多吗

关于“三垂线定理及其逆定理”

很多教师都说,整个高中立体几何就是“三垂线定理”。尽管说得过分些,但从另外一个角度说明,“三垂线定理”在整个高中“立体几何”中的地位和作用。确实,“三垂线定理”是整个立体几何内容的一个典型代表,处在整个立体几何知识的枢纽位置,综合了很多知识内容:直线与直线、直线与平面、平面与平面的垂直和平行。在数学2“点、直线、平面之间的位置关系”中虽然没有明确提到“三垂线定理”,但在选修2-1“空间向量与立体几何”中提到“能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理)”。按照这种提法,教材中必须明确提出“三垂线定理”,学生应该知道这个定理。至于放在《数学2》中,还是放在《选修2-1》中,则是另外一个问题。实际上,考虑到目前“点、直线、平面之间的位置关系”一章仅有10课时,而且直线与平面、平面与平面平行和垂直的判定定理仅仅要求归纳得出,在《数学2》中没有严格的证明。我们认为,“三垂线定理”放在《选修2-1》中比较合适,而且只要求了解其内容,并用向量方法证明,不要求运用此定理证明有关的命题。

有了“三垂线定理”,“三垂线定理的逆定理”也就顺理成章了,无非是斜线与斜线在平面内的射影的位置互换了一下。

在教材实验过程中,教师非常关注“三垂线定理及其逆定理”的教学。一方面是它在过去整个高中“立体几何”中的地位和作用;另一方面,它也是过去高考的核心内容,目前的高考试卷中,如果是用综合法处理的“立体几何”方面的大题,都是关于“三垂线定理及其逆定理”的。但是,随着空间向量及其运算引入“立体几何”内容中,用空间向量及其运算的向量方法(或坐标方法)处理有关垂直和平行问题成为一种普适的方法,用“三垂线定理及其逆定理”的综合方法退居其次。高中数学新课程中强调用空间向量及其运算处理立体几何中的角度、距离,淡化综合方法处理角度问题和距离问题。

三垂线定理是高中立体几何中解决线线垂直、线面垂直的重要工具,为找二面角及相关证明带来很多方便。主要对三垂线定理进行深入的剖析并对其在实际解题中的应用做相关的分析与拓展。

1准备知识

定理1:如果一条直线和平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。定理2:如果不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。定理3:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。定理4:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。定理5:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

定义1:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。定义2:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角。推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行。

2三垂线定理 (三垂线定理)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

分析:首先可以看出三垂线定理的条件有两个1)在平面内的一条直线a;2)a和斜线PA的射影OA垂直;结论:a和PA垂直。不难看到三垂线定理其实质是线面垂直判定定理的一个推广:,。又OA,OPOA=O,平面OAP。所以在做题时不必死板的去寻找所谓的斜线、垂线和射影,而应从宏观上把握线面垂直的判定定理。

(三垂线定理的逆定理)在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂直。

分析:我们也不难看出三垂线定理和平面与平面垂直紧密联系着,因平面与平面垂直的判定定理是:如果一个平面过另一个平面的一条垂线,那么这两个平面垂直,因此我们在证明面面垂直时,也要时刻与三垂线定理挂起钩来。 3三垂线定理在解题中的应用 例1:四棱锥P-ABCD的底是正方形,PA平面ABCD,PA=AD=3,E为PA上的点,且,(),Q为PD上的点,且DQ=QP。(>0)

高考数学立体几何得分标准_数值错误的扣分

当然重要,高考立体几何占20-30分,而且必出大题。立体几何难,是因为很多人特别是女生,从小没有培养训练过立体几何思维,如果立体思维哈,立体几何其实是最简单的初中平面几何! 立体几何思维只能通过学习研究立体几何模型来培养啊,去买立体几何模型,是明智的选择。

1、两个二倍角公式,诱导公式,各给1分;

2、如果只有最后一步结果,没有过程,则给1分,不影响后续得分;

3、最后一步结果正确,但缺少上面的某一步过程,不扣分;

4、如果过程中某一步化简错了,则只给这一步前面的得分点。

扩展资料:

对于高考数学题,特点是压轴题,有很多同学抱着“回避”的态度,这种“回避”必然导致“起评分”降低--别人从“150分”的试题中得分,而你只能从“120分”的试题中得分。

因此,从某种意义上说,这种“回避”增加了考试的难度!因为,假如有些基础题你思维“短路”,立刻导致考试“溃败”。

其实,只要我们了解高考数学题的特点,并且掌握一定的答题技巧,注意评分的细则,相信同学们还是能够取得高分的。下面,我谈一谈我的几点认识,供同学们参考。

文章标签: # 平面 # 直线 # 定理